Abstract

The objective of this study was to compare the kinematics of the head-neck, torso, pelvis, and lower extremities and document injuries and their patterns to small female occupants in frontal impacts with upright and reclined postures using an experimental model. Six postmortem human surrogates (PMHS) with a mean stature of 154 ± 9.0 cm and mass of 49 ± 12 kg were equally divided between upright and reclined groups (seatback: 25 deg and 45 deg), restrained by a three-point integrated belt, positioned on a semirigid seat, and exposed to low and moderate crash velocities (15 km/h and 32 km/h respectively). The response between the upright and reclined postures was similar in magnitude and curve morphology. While none of the differences were statistically significant, the thoracic spine demonstrated increased downward (+Z) displacement, and the head demonstrated an increased horizontal (+X) displacement for the reclined occupants. In contrast, the upright occupants showed a slightly increased downward (+Z) displacement at the head, but the torso displaced primarily along the +X direction. The posture angles between the two groups were similar at the pelvis and different at the thorax and head. At 32 km/h, both cohorts exhibited multiple rib failure, with upright specimens having a greater number of severe fractures. Although MAIS was the same in both groups, the upright specimens had more bi-cortical rib fractures, suggesting the potential for pneumothorax. This preliminary study may be useful in validating physical (ATDs) and computational (HBMs) surrogates.

References

1.
NHTSA,
2008
, National Highway Traffic Safety Administration (NHTSA) Laboratory Test Procedure for FMVSS No. 208 - Frontal Impact Test,
Washington, DC
.
2.
NHTSA,
2012
, National Highway Traffic Safety Administration (NHTSA) Laboratory Test Procedure for New Car Assessment Program Frontal Impact Testing,
Washington, DC
.
3.
Jorlöv
,
S.
,
Bohman
,
K.
, and
Larsson
,
A.
,
2017
, “
Seating Positions and Activities in Highly Automated Cars–a Qualitative Study of Future Automated Driving Scenarios
,”
International Research Conference on the Biomechanics of Impact
, Antwerb, Belgium, Sept. 13–15, pp.
11
17
.http://www.ircobi.org/wordpress/downloads/irc17/pdffiles/11.pdf
4.
Richardson
,
R.
,
Donlon
,
J.-P.
,
Jayathirtha
,
M.
,
Forman
,
J. L.
,
Shaw
,
G.
,
Östling
,
M.
,
Mroz
,
K.
, and
Pipkorn
,
B.
,
2020
, “
Kinematic and Injury Response of Reclined PMHS in Frontal Impacts
,”
Stapp Car Crash J.
,
64
, pp.
83
153
.10.4271/2020-22-0004
5.
Baudrit
,
P.
,
Uriot
,
J.
,
Olivier
,
R.
, and
Matthieu
,
D.
,
2022
, “
Investigation of Potential Injury Patterns and Occupant Kinematics in Frontal Impact With PMHS in Reclined Postures
,”
SAE
Paper No. 2022-22-0001.https://www.sae.org/publications/technicalpapers/content/2022-22-0001/
6.
Somasundaram
,
K.
,
Humm
,
J.
,
Yoganandan
,
N.
,
Hauschild
,
H.
,
Driesslein
,
K.
, and
Pintar
,
F.
,
2022
, “
Obese Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts
,”
SAE
Paper No. 2022-22-0002.https://www.sae.org/publications/technicalpapers/content/2022-22-0002/
7.
Luet
,
C.
,
Trosseille
,
X.
,
Drazétic
,
P.
,
Potier
,
P.
, and
Vallancien
,
G.
,
2012
, “
Kinematics and Dynamics of the Pelvis in the Process of Submarining Using PMHS Sled Tests
,”
Stapp Car Crash J.
,
56
, pp.
411
442
.10.4271/2012-22-0011
8.
Trosseille
,
X.
,
Petit
,
P.
,
Uriot
,
J.
,
Potier
,
P.
,
Baudrit
,
P.
,
Richard
,
O.
,
Compigne
,
S.
,
Masuda
,
M.
, and
Douard
,
R.
,
2018
, “
Reference PMHS Sled Tests toAssessSubmarining of the Small Female
,”
Stapp Car Crash J.
,
62
, pp.
93
118
.10.4271/2018-22-0003
9.
Shaw
,
G.
,
Lessley
,
D.
,
Ash
,
J.
,
Poplin
,
J.
,
McMurry
,
T.
,
Sochor
,
M.
, and
Crandall
,
J.
,
2017
, “
Small Female Rib Cage Fracture in Frontal Sled Tests
,”
Traffic Injury Prev.
,
18
(
1
), pp.
77
82
.10.1080/15389588.2016.1193599
10.
Uriot
,
J.
,
Potier
,
P.
,
Baudrit
,
P.
,
Trosseille
,
X.
,
Petit
,
P.
,
Richard
,
O.
,
Compigne
,
S.
,
Masuda
,
M.
, and
Douard
,
R.
,
2015
, “
Reference PMHS Sled Tests to Assess Submarining
,”
Stapp Car Crash J.
,
59
, pp.
203
–2
23
.10.4271/2015-22-0008
11.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Stemper
,
B. D.
,
Baisden
,
J. L.
,
Aktay
,
R.
,
Shender
,
B. S.
, and
Paskoff
,
G.
,
2006
, “
Bone Mineral Density of Human Female Cervical and Lumbar Spines From Quantitative Computed Tomography
,”
Spine (Phila Pa 1976)
,
31
(
1
), pp.
73
76
.10.1097/01.brs.0000192684.12046.93
12.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Zhang
,
J.
,
Stemper
,
B. D.
, and
Philippens
,
M.
,
2008
, “
Upper Neck Forces and Moments and Cranial Angular Accelerations in Lateral Impact
,”
Ann. Biomed. Eng.
,
36
(
3
), pp.
406
414
.10.1007/s10439-007-9422-7
13.
Reed
,
M. P.
,
Ebert-Hamilton
,
S. M.
, and
Rupp
,
J. D.
,
2012
, “
Effects of Obesity on Seat Belt Fit
,”
Traffic Inj Prev.
,
13
(
4
), pp.
364
372
.10.1080/15389588.2012.659363
14.
SAE International
,
2018
, “Devices for Use in Defining and Measuring Vehicle Seating Accommodation,”
SAE
Paper No. J826_202106.https://www.sae.org/standards/content/j826_202106/
15.
Reed
,
M. P.
,
Ebert
,
S. M.
, and
Jones
,
M. L. H.
,
2019
, “
Posture and Belt Fit in Reclined Passenger Seats
,”
Traffic Inj. Prev.
,
20
(
sup1
), pp.
S38
S42
.10.1080/15389588.2019.1630733
16.
Reed
,
M. P.
,
Ebert
,
S. M.
, and
Hallman
,
J. J.
,
2013
, “
Effects of DriverCharacteristics on Seat Belt Fit
,”
Stapp Car Crash J.
,
57
(
57
), pp.
43
57
.10.4271/2013-22-0002
17.
Patrick
,
L. M.
, and
Trosien
,
R.
,
1971
, “
Volunteer, Anthropometric Dummy, and Cadaver Responses With Three and Four Point Restraints
,”
SAE
Paper No. 710079, pp.
256
280
.10.4271/710079
18.
Wiechel
,
J.
, and
Bolte
,
J.
,
2006
, “
Response of Reclined Post Mortem Human Subjects to Frontal Impact
,”
SAE
Paper No. 2006-01-0674.10.4271/2006-01-0674
19.
Vezin
,
P.
,
Bruyere-Garnier
,
K.
, and
Bermond
,
F.
,
2002
, “
Human Response to a Frontal Sled Deceleration
,”
IRCOBI Conference on the Biomechanics of Impacts
, Germany, Sept. 18–20, p.
323
.http://www.ircobi.org/wordpress/downloads/irc0111/2002/Session5/5.3.pdf
20.
SAE,
2003
, “
Instrumentation for Impact Test
,”
SAE
Paper No. J211-1
.https://www.sae.org/standards/content/j211/1_202208/
21.
Slykhouse
,
L.
,
Zaseck
,
L. W.
,
Miller
,
C.
,
Humm
,
J. R.
,
Alai
,
A.
,
Kang
,
Y. S.
,
Dooley
,
C.
,
Sherman
,
D.
,
Bigler
,
B.
,
Demetropoulos
,
C. K.
,
Reed
,
M. P.
, and
Rupp
,
J. D.
,
2019
, “
Anatomically-Based Skeletal Coordinate Systems for Use With Impact Biomechanics Data Intended for Anthropomorphic Test Device Development
,”
J. Biomech.
,
92
, pp.
162
168
.10.1016/j.jbiomech.2019.05.032
22.
Gayzik
,
F. S.
,
Marcus
,
I. P.
,
Danelson
,
K. A.
,
Rupp
,
J. D.
,
Bass
,
C. R.
,
Yoganandan
,
N.
, and
Zhang
,
J.
,
2015
, “
A Point-Wise Normalization Method for Development of Biofidelity Response Corridors
,”
J. Biomech.
,
48
(
15
), pp.
4173
4177
.10.1016/j.jbiomech.2015.09.017
23.
Association for the Advancement of Automotive Medicine
, The Abbreviated Injury Scale
2015
, Revision, Des Plaines.
24.
Beeman
,
S. M.
,
Kemper
,
A. R.
,
Madigan
,
M. L.
,
Franck
,
C. T.
, and
Loftus
,
S. C.
,
2012
, “
Occupant Kinematics in Low-Speed Frontal Sled Tests: Human olunteers, Hybrid III ATD, and PMHS
,”
Accid. Anal. Prev.
,
47
, pp.
128
139
.10.1016/j.aap.2012.01.016
25.
Pintar
,
F. A.
,
Yoganandan
,
N.
, and
Maiman
,
D. J.
,
2010
, “
Lower Cervical Spine Loading in Frontal Sled Tests Using Inverse Dynamics: Potential Applications for Lower Neck Injury Criteria
,”
Stapp Car Crash J.
,
54
, pp.
133
–1
66
.10.4271/2010-22-0008
26.
Kuppa
,
S.
,
Eppinger
,
R. H.
,
McKoy
,
F.
, and
Nguyen
,
T.
,
2003
, “
DevelopmentofSide Impact Thoracic Injury Criteria and Their Application to the Modified ES-2 Dummy With Rib Extensions (ES-2RE)
,”
Stapp Car Crash J.
,
47
, pp.
189
210
.10.4271/2003-22-0010
27.
Maltese
,
M. R.
,
Eppinger
,
R. H.
,
Rhule
,
H. H.
,
Donnelly
,
B. R.
,
Pintar
,
F. A.
, and
Yoganandan
,
N.
,
1999
, “
Response Corridors of Human Surrogates in Lateral Impacts
,”
Stapp Car Crash J.
, 46, pp. 321–351.10.4271/2002-22-0017
28.
Tanaka
,
Y.
,
Nakashima
,
A.
,
Feng
,
H.
,
Mizuno
,
K.
,
Yamada
,
M.
,
Yamada
,
Y.
,
Yokoyama
,
Y.
, and
Jinzaki
,
M.
,
2021
, “
Analysis of Lap Belt Fit to Human Subjects Using CT Images
,”
Stapp Car Crash J.
,
65
, pp.
49
90
.10.4271/2021-22-0004
29.
Rouhana
,
S. W.
,
Horsch
,
J. D.
, and
Kroell
,
C. K.
,
1989
, “
Assessment of Lap-Shoulder Belt Restraint Performance in Laboratory Testing
,”
SAE
Paper No. 892439, pp.
1810
1823
.10.4271/892439
30.
Moreau
,
D.
,
Donlon
,
J. P.
,
Richardson
,
R.
, and
Gepner
,
B.
,
2021
, “
A Methodology to Replicate Lap Belt Loading Conditions From a Sled Impact Test in a Non-Impact Dynamic Environment on Whole-Body Postmortem Human Subjects
,”
Proceedings of IRCOBI Conference
, Virtual, Sept. 8–10.http://www.ircobi.org/wordpress/downloads/irc21/pdffiles/2136.pdf
31.
Somasundaram
,
K.
,
Hauschild
,
H. W.
,
Driesslein
,
K.
,
Pintar
,
F.
,
Richardson
,
R.
, and
Parent
,
D.
,
2023
, “
THOR-05F Biofidelity Evaluation in Reclined and Upright Seated Postures Subjected to Frontal Crash Pulses
,”
SSRN
, p.
4391355
.10.2139/ssrn.4391355
You do not currently have access to this content.