Abstract

Fatigue failure in biological soft tissues plays a critical role in the etiology of chronic soft tissue injuries and diseases such as osteoarthritis (OA). Understanding failure mechanisms is hindered by the decades-long timescales over which damage takes place. Analyzing the factors contributing to fatigue failure requires the help of validated computational models developed for soft tissues. This study presents a framework for fatigue failure of fibrous biological tissues based on reaction kinetics, where the composition of intact and fatigued material regions can evolve via degradation and breakage over time, in response to energy-based fatigue and damage criteria. Using reactive constrained mixture theory, material region mass fractions are governed by the axiom of mass balance. Progression of fatigue is controlled by an energy-based reaction rate, with user-selected probability functions defining the damage propensity of intact and fatigued material regions. Verification of this reactive theory, which is implemented in the open-source FEBio finite element software, is provided in this study. Validation is also demonstrated against experimental data, showing that predicted damage can be linked to results from biochemical assays. The framework is also applied to study fatigue failure during frictional contact of cartilage. Simulating previous experiments suggests that frictional effects slightly increase fatigue progression, but the main driver is cyclic compressive contact loading. This study demonstrated the ability of theoretical models to complement and extend experimental findings, advancing our understanding of the time progression of fatigue in biological tissues.

References

1.
Gallagher
,
S.
, and
Schall
,
M. C.
,
2020
, “
Musculoskeletal Disorders as a Fatigue Failure Process: Evidence, Implications and Research Needs
,”
New Paradigms in Ergonomics
,
Routledge
, London, UK, pp.
105
119
.
2.
Linka
,
K.
,
Hillgartner
,
M.
, and
Itskov
,
M.
,
2018
, “
Fatigue of Soft Fibrous Tissues: Multi-Scale Mechanics and Constitutive Modeling
,”
Acta Biomater.
,
71
, pp.
398
410
.10.1016/j.actbio.2018.03.010
3.
Martin
,
C.
, and
Sun
,
W.
,
2015
, “
Fatigue Damage of Collagenous Tissues: Experiment, Modeling and Simulation Studies
,”
J. Long-Term Eff. Med. Implants
,
25
(
1–2
), pp.
55
73
.10.1615/JLongTermEffMedImplants.2015011749
4.
Durney
,
K. M.
,
Shaeffer
,
C. A.
,
Zimmerman
,
B. K.
,
Nims
,
R. J.
,
Oungoulian
,
S.
,
Jones
,
B. K.
,
Boorman-Padgett
,
J. F.
, et al.,
2020
, “
Immature Bovine Cartilage Wear by Fatigue Failure and Delamination
,”
J. Biomech.
,
107
, p.
109852
.10.1016/j.jbiomech.2020.109852
5.
Sun
,
H. B.
,
2010
, “
Mechanical Loading, Cartilage Degradation, and Arthritis
,”
Mol. Integr. Physiol. Musculoskeletal Syst.
,
1211
(
1
), pp.
37
50
.10.1111/j.1749-6632.2010.05808.x
6.
Glyn-Jones
,
S.
,
Palmer
,
A. J.
,
Agricola
,
R.
,
Price
,
A. J.
,
Vincent
,
T. L.
,
Weinans
,
H.
, and
Carr
,
A. J.
,
2015
, “
Osteoarthritis
,”
Lancet
,
386
(
9991
), pp.
376
387
.10.1016/S0140-6736(14)60802-3
7.
Oungoulian
,
S. R.
,
Durney
,
K. M.
,
Jones
,
B. K.
,
Ahmad
,
C. S.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2015
, “
Wear and Damage of Articular Cartilage With Friction Against Orthopedic Implant Materials
,”
J. Biomech.
,
48
(
10
), pp.
1957
1964
.10.1016/j.jbiomech.2015.04.008
8.
Petersen
,
C.
,
Sise
,
C.
,
Dewing
,
J.
,
Yun
,
J.
,
Zimmerman
,
B.
,
Guo
,
X.
,
Hung
,
C.
, and
Ateshian
,
G.
,
2023
, “
Immature Bovine Cartilage Wear is Due to Fatigue Failure From Repetitive Compressive Forces and Not Reciprocating Frictional Forces
,”
Osteoarthritis Cartilage
,
31
(
12
), pp.
1594
1601
.10.1016/j.joca.2023.08.008
9.
Buckley
,
M. R.
,
Gleghorn
,
J. P.
,
Bonassar
,
L. J.
, and
Cohen
,
I.
,
2008
, “
Mapping the Depth Dependence of Shear Properties in Articular Cartilage
,”
J. Biomech.
,
41
(
11
), pp.
2430
2437
.10.1016/j.jbiomech.2008.05.021
10.
Buckley
,
M. R.
,
Bergou
,
A. J.
,
Fouchard
,
J.
,
Bonassar
,
L. J.
, and
Cohen
,
I.
,
2010
, “
High-Resolution Spatial Mapping of Shear Properties in Cartilage
,”
J. Biomech.
,
43
(
4
), pp.
796
800
.10.1016/j.jbiomech.2009.10.012
11.
Buckley
,
M. R.
,
Bonassar
,
L. J.
, and
Cohen
,
I.
,
2013
, “
Localization of Viscous Behavior and Shear Energy Dissipation in Articular Cartilage Under Dynamic Shear Loading
,”
ASME J. Biomech. Eng.
,
135
(
3
), p.
031002
.10.1115/1.4007454
12.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
13.
Caligaris
,
M.
,
Canal
,
C. E.
,
Ahmad
,
C. S.
,
Gardner
,
T. R.
, and
Ateshian
,
G. A.
,
2009
, “
Investigation of the Frictional Response of Osteoarthritic Human Tibiofemoral Joints and the Potential Beneficial Tribological Effect of Healthy Synovial Fluid
,”
Osteoarthritis Cartilage
,
17
(
10
), pp.
1327
1332
.10.1016/j.joca.2009.03.020
14.
Cowin
,
S. C.
,
2004
, “
Tissue Growth and Remodeling
,”
Annu. Rev. Biomed. Eng.
,
6
(
1
), pp.
77
107
.10.1146/annurev.bioeng.6.040803.140250
15.
Myers
,
K.
, and
Ateshian
,
G. A.
,
2014
, “
Interstitial Growth and Remodeling of Biological Tissues: Tissue Composition as State Variables
,”
ASME J. Mech. Behav. Biomed. Mater.
,
29
, pp.
544
556
.10.1016/j.jmbbm.2013.03.003
16.
Ateshian
,
G. A.
,
2017
, “
Mixture Theory for Modeling Biological Tissues: Illustrations From Articular Cartilage
,”
Biomechanics: Trends in Modeling and Simulation
,
Springer
, Cham, Switzerland, pp.
1
51
.
17.
Ambrosi
,
D.
,
Ben Amar
,
M.
,
Cyron
,
C.
,
De Simone
,
A.
,
Goriely
,
A.
,
Humphrey
,
J. D.
, and
Kuhl
,
E.
,
2019
, “
Growth and Remodelling of Living Systems: Perspectives, Challenges, and Opportunities
,”
J. R. Soc. Interface
,
16
(
157
), p.
20190233
.10.1098/rsif.2019.0233
18.
Weightman
,
B.
,
Freeman
,
M.
, and
Swanson
,
S.
,
1973
, “
Fatigue of Articular Cartilage
,”
Nature
,
244
(
5414
), pp.
303
304
.10.1038/244303a0
19.
Weightman
,
B.
,
1976
, “
Tensile Fatigue of Human Articular Cartilage
,”
J. Biomech.
,
9
(
4
), pp.
193
200
.10.1016/0021-9290(76)90004-X
20.
Weightman
,
B.
,
Chappell
,
D.
, and
Jenkins
,
E.
,
1978
, “
A Second Study of Tensile Fatigue Properties of Human Articular Cartilage
,”
Ann. Rheum. Dis.
,
37
(
1
), pp.
58
63
.10.1136/ard.37.1.58
21.
Bellucci
,
G.
, and
Seedhom
,
B.
,
2001
, “
Mechanical Behaviour of Articular Cartilage Under Tensile Cyclic Load
,”
Rheumatology
,
40
(
12
), pp.
1337
1345
.10.1093/rheumatology/40.12.1337
22.
Hosseini
,
S. M.
,
Veldink
,
M. B.
,
Ito
,
K.
, and
van Donkelaar
,
C.
,
2013
, “
Is Collagen Fiber Damage the Cause of Early Softening in Articular Cartilage?
,”
Osteoarthritis Cartilage
,
21
(
1
), pp.
136
143
.10.1016/j.joca.2012.09.002
23.
Landinez-Parra
,
N. S.
,
Garzón-Alvarado
,
D. A.
, and
Vanegas-Acosta
,
J. C.
,
2011
, “
A Phenomenological Mathematical Model of the Articular Cartilage Damage
,”
Comput. Methods Prog. Biomed.
,
104
(
3
), pp.
E58
E74
.10.1016/j.cmpb.2011.02.003
24.
Dong
,
H.
,
Liu
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2020
, “
A Residual Stiffness-Based Model for the Fatigue Damage of Biological Soft Tissues
,”
J. Mech. Phys. Solids
,
143
, p.
104074
.10.1016/j.jmps.2020.104074
25.
Riemenschneider
,
P. E.
,
Rose
,
M. D.
,
Giordani
,
M.
, and
McNary
,
S. M.
,
2019
, “
Compressive Fatigue and Endurance of Juvenile Bovine Articular Cartilage Explants
,”
J. Biomech.
,
95
, p.
109304
.10.1016/j.jbiomech.2019.07.048
26.
Smith
,
D. W.
,
Gardiner
,
B. S.
,
Zhang
,
L.
, and
Grodzinsky
,
A. J.
,
2019
, “
Cartilage Tissue Dynamics
,”
Articular Cartilage Dynamics
,
Springer
, Singapore, pp.
245
309
.
27.
Vazquez
,
K. J.
,
Andreae
,
J. T.
, and
Henak
,
C. R.
,
2019
, “
Cartilage-on-Cartilage Cyclic Loading Induces Mechanical and Structural Damage
,”
ASME J. Mech. Behav. Biomed. Mater.
,
98
, pp.
262
267
.10.1016/j.jmbbm.2019.06.023
28.
Kachanov
,
L. M.
,
1986
,
Introduction to Continuum Damage Mechanics
(Boston Mechanics of elastic stability),
M. Nijhoff
,
Dordrecht, The Netherlands
.
29.
Chaboche
,
J. L.
, and
Lesne
,
P. M.
,
1988
, “
A Non-Linear Continuous Fatigue Damage Model
,”
Fatigue Fract. Eng. Mater. Struct.
,
11
(
1
), pp.
1
17
.10.1111/j.1460-2695.1988.tb01216.x
30.
Chaboche
,
J. L.
,
1988
, “
Continuum Damage Mechanics.1. General Concepts
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
59
64
.10.1115/1.3173661
31.
Lemaitre
,
J.
, and
Desmorat
,
R.
,
2005
,
Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures
,
Springer Science & Business Media
, Berlin.
32.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1967
, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
,
47
(
2
), pp.
597
613
.10.1063/1.1711937
33.
Zitnay
,
J. L.
,
Li
,
Y.
,
Qin
,
Z.
,
San
,
B. H.
,
Depalle
,
B.
,
Reese
,
S. P.
,
Buehler
,
M. J.
,
Yu
,
S. M.
, and
Weiss
,
J. A.
,
2017
, “
Molecular Level Detection and Localization of Mechanical Damage in Collagen Enabled by Collagen Hybridizing Peptides
,”
Nat. Commun.
,
8
(
1
), p.
14913
.10.1038/ncomms14913
34.
Hollander
,
A. P.
,
Heathfield
,
T. F.
,
Webber
,
C.
,
Iwata
,
Y.
,
Bourne
,
R.
,
Rorabeck
,
C.
, and
Poole
,
A. R.
,
1994
, “
Increased Damage to Type-Ii Collagen in Osteoarthritic Articular-Cartilage Detected by a New Immunoassay
,”
J. Clin. Invest.
,
93
(
4
), pp.
1722
1732
.10.1172/JCI117156
35.
Bank
,
R. A.
,
Krikken
,
M.
,
Beekman
,
B.
,
Stoop
,
R.
,
Maroudas
,
A.
,
Lafeber
,
F. P. J. G.
, and
Koppele
,
J. M. T.
,
1997
, “
A Simplified Measurement of Degraded Collagen in Tissues: Application in Healthy, Fibrillated and Osteoarthritic Cartilage
,”
Matrix Biol.
,
16
(
5
), pp.
233
243
.10.1016/S0945-053X(97)90012-3
36.
Dehring
,
K. A.
,
Smukler
,
A. R.
,
Roessler
,
B. J.
, and
Morris
,
M. D.
,
2006
, “
Correlating Changes in Collagen Secondary Structure With Aging and Defective Type II Collagen by Raman Spectroscopy
,”
Appl. Spectrosc.
,
60
(
4
), pp.
366
372
.10.1366/000370206776593582
37.
Votteler
,
M.
,
Berrio
,
D. A. C.
,
Pudlas
,
M.
,
Walles
,
H.
,
Stock
,
U. A.
, and
Schenke-Layland
,
K.
,
2012
, “
Raman Spectroscopy for the Non-Contact and Non-Destructive Monitoring of Collagen Damage Within Tissues
,”
J. Biophotonics
,
5
(
1
), pp.
47
56
.10.1002/jbio.201100068
38.
Humphrey
,
J.
, and
Rajagopal
,
K.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Methods Appl. Sci.
,
12
(
3
), pp.
407
430
.10.1142/S0218202502001714
39.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2003
, “
A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow
,”
Biomech. Model Mechanobiol.
,
2
(
2
), pp.
109
126
.10.1007/s10237-003-0033-4
40.
Ateshian
,
G. A.
, and
Ricken
,
T.
,
2010
, “
Multigenerational Interstitial Growth of Biological Tissues
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
689
702
.10.1007/s10237-010-0205-y
41.
Ateshian
,
G. A.
,
2015
, “
Viscoelasticity Using Reactive Constrained Solid Mixtures
,”
J. Biomech.
,
48
(
6
), pp.
941
947
.10.1016/j.jbiomech.2015.02.019
42.
Nims
,
R. J.
, and
Ateshian
,
G. A.
,
2017
, “
Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues
,”
J. Elasticity
,
129
(
1–2
), pp.
69
105
.10.1007/s10659-017-9630-9
43.
Ateshian
,
G. A.
, and
Zimmerman
,
B. K.
,
2022
, “
Continuum Thermodynamics of Constrained Reactive Mixtures
,”
ASME J. Biomech. Eng.
,
144
(
4
), p.
041011
.10.1115/1.4053084
44.
Nims
,
R. J.
,
Durney
,
K. M.
,
Cigan
,
A. D.
,
Dusseaux
,
A.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2016
, “
Continuum Theory of Fibrous Tissue Damage Mechanics Using Bond Kinetics: Application to Cartilage Tissue Engineering
,”
Interface Focus
,
6
(
1
), p.
20150063
.10.1098/rsfs.2015.0063
45.
Lin
,
A. H.
,
Zitnay
,
J. L.
,
Li
,
Y.
,
Yu
,
S. M.
, and
Weiss
,
J. A.
,
2019
, “
Microplate Assay for Denatured Collagen Using Collagen Hybridizing Peptides
,”
J. Orthop. Res.
,
37
(
2
), pp.
431
438
.10.1002/jor.24185
46.
Schechtman
,
H.
, and
Bader
,
D. L.
,
1997
, “
In Vitro Fatigue of Human Tendons
,”
J. Biomech.
,
30
(
8
), pp.
829
835
.10.1016/S0021-9290(97)00033-X
47.
Schechtman
,
H.
, and
Bader
,
D. L.
,
2002
, “
Fatigue Damage of Human Tendons
,”
J. Biomech.
,
35
(
3
), pp.
347
353
.10.1016/S0021-9290(01)00177-4
48.
Zitnay
,
J. L.
,
Lin
,
A. H.
, and
Weiss
,
J. A.
,
2021
, “
Tendons Exhibit Greater Resistance to Tissue and Molecular-Level Damage With Increasing Strain Rate During Cyclic Fatigue
,”
Acta Biomater.
,
134
, pp.
435
442
.10.1016/j.actbio.2021.07.045
49.
Henderson
,
B. S.
,
Cudworth
,
K. F.
,
Wale
,
M. E.
,
Siegel
,
D. N.
, and
Lujan
,
T. J.
,
2022
, “
Tensile Fatigue Strength and Endurance Limit of Human Meniscus
,”
ASME J. Mech. Behav. Biomed. Mater.
,
127
, p.
105057
.10.1016/j.jmbbm.2021.105057
50.
Bai
,
R.
,
Yang
,
J.
, and
Suo
,
Z.
,
2019
, “
Fatigue of Hydrogels
,”
Eur. J. Mech.-A/Solids
,
74
, pp.
337
370
.10.1016/j.euromechsol.2018.12.001
51.
Kellermayer
,
M. S.
,
Smith
,
S. B.
,
Bustamante
,
C.
, and
Granzier
,
H. L.
,
2001
, “
Mechanical Fatigue in Repetitively Stretched Single Molecules of Titin
,”
Biophys. J.
,
80
(
2
), pp.
852
863
.10.1016/S0006-3495(01)76064-X
52.
Gautieri
,
A.
,
Buehler
,
M. J.
, and
Redaelli
,
A.
,
2009
, “
Deformation Rate Controls Elasticity and Unfolding Pathway of Single Tropocollagen Molecules
,”
ASME J. Mech. Behav. Biomed. Mater.
,
2
(
2
), pp.
130
137
.10.1016/j.jmbbm.2008.03.001
53.
Zitnay
,
J. L.
,
Jung
,
G. S.
,
Lin
,
A. H.
,
Qin
,
Z.
,
Li
,
Y.
,
Yu
,
S. M.
,
Buehler
,
M. J.
, and
Weiss
,
J. A.
,
2020
, “
Accumulation of Collagen Molecular Unfolding is the Mechanism of Cyclic Fatigue Damage and Failure in Collagenous Tissues
,”
Sci. Adv.
,
6
(
35
), p.
eaba2795
.10.1126/sciadv.aba2795
54.
Wess
,
T. J.
,
2008
, “
Collagen Fibrillar Structure and Hierarchies
,”
Collagen: Structure and Mechanics
,
Springer
, Boston, MA, pp.
49
80
.
55.
Gautieri
,
A.
,
Vesentini
,
S.
,
Redaelli
,
A.
, and
Buehler
,
M. J.
,
2009
, “
Intermolecular Slip Mechanism in Tropocollagen Nanofibrils
,”
Int. J. Mater. Res.
,
100
(
7
), pp.
921
925
.10.3139/146.110132
56.
Streeter
,
I.
, and
de Leeuw
,
N. H.
,
2011
, “
A Molecular Dynamics Study of the Interprotein Interactions in Collagen Fibrils
,”
Soft Matter
,
7
(
7
), pp.
3373
3382
.10.1039/c0sm01192d
57.
Zimmerman
,
B. K.
,
Maas
,
S. A.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2022
, “
A Finite Element Algorithm for Large Deformation Biphasic Frictional Contact Between Porous-Permeable Hydrated Soft Tissues
,”
ASME J. Biomech. Eng.
,
144
(
2
), p.
021008
.10.1115/1.4052114
58.
Rabotnov
,
Y. N.
,
1969
, “
Creep Rupture
,”
Applied Mechanics
,
Springer
, Berlin, pp.
342
349
.
59.
Zimmerman
,
B. K.
,
Jiang
,
D.
,
Weiss
,
J. A.
,
Timmins
,
L. H.
, and
Ateshian
,
G. A.
,
2021
, “
On the Use of Constrained Reactive Mixtures of Solids to Model Finite Deformation Isothermal Elastoplasticity and Elastoplastic Damage Mechanics
,”
J. Mech. Phys. Solids
,
155
, p.
104534
.10.1016/j.jmps.2021.104534
60.
Ateshian
,
G. A.
,
Kroupa
,
K. R.
,
Petersen
,
C. A.
,
Zimmerman
,
B. K.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2023
, “
Damage Mechanics of Biological Tissues in Relation to Viscoelasticity
,”
ASME J. Biomech. Eng.
,
145
(
4
), p.
041011
.10.1115/1.4056063
61.
Ateshian
,
G. A.
,
Nims
,
R. J.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2014
, “
Computational Modeling of Chemical Reactions and Interstitial Growth and Remodeling Involving Charged Solutes and Solid-Bound Molecules
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1105
1120
.10.1007/s10237-014-0560-1
62.
Prud'homme
,
R.
,
2010
,
Flows of Reactive Fluids
, Vol.
94
,
Springer Science & Business Media
, Berlin.
63.
Ostergren
,
W.
, and
Krempl
,
E.
,
1979
, “
A Uniaxial Damage Accumulation Law for Time-Varying Loading Including Creep-Fatigue Interaction
,”
ASME J. Pressure Vessel Technol.
, 101(2), pp.
118
124
.10.1115/1.3454610
64.
Juvinall
,
R. C.
, and
Marshek
,
K. M.
,
Fundamentals of Machine Component Design
, 6th ed., Wiley, Hoboken, NJ.
65.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
66.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK
.
67.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2013
, “
Multiphasic Finite Element Framework for Modeling Hydrated Mixtures With Multiple Neutral and Charged Solutes
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111001
.10.1115/1.4024823
68.
Maas
,
S. A.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2017
, “
FEBio: History and Advances
,”
Annu. Rev. Biomed. Eng.
,
19
(
1
), pp.
279
299
.10.1146/annurev-bioeng-071516-044738
69.
Swedberg
,
A. M.
,
Reese
,
S. P.
,
Maas
,
S. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2014
, “
Continuum Description of the Poisson's Ratio of Ligament and Tendon Under Finite Deformation
,”
J. Biomech.
,
47
(
12
), pp.
3201
3209
.10.1016/j.jbiomech.2014.05.011
70.
Benjamin
,
M.
, and
Ralphs
,
J.
,
1997
, “
Invited Review Tendons and Ligaments-an Overview
,”
Histol Histopathol
,
12
, pp.
1135
1144
.10.14670/HH-12.1135
71.
Safa
,
B. N.
,
Bloom
,
E. T.
,
Lee
,
A. H.
,
Santare
,
M. H.
, and
Elliott
,
D. M.
,
2020
, “
Evaluation of Transverse Poroelastic Mechanics of Tendon Using Osmotic Loading and Biphasic Mixture Finite Element Modeling
,”
J. Biomech.
,
109
, p.
109892
.10.1016/j.jbiomech.2020.109892
72.
Holmes
,
M.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
1156
.10.1016/0021-9290(90)90007-P
73.
Caligaris
,
M.
, and
Ateshian
,
G. A.
,
2008
, “
Effects of Sustained Interstitial Fluid Pressurization Under Migrating Contact Area, and Boundary Lubrication by Synovial Fluid, on Cartilage Friction
,”
Osteoarthritis Cartilage
,
16
(
10
), pp.
1220
1227
.10.1016/j.joca.2008.02.020
74.
Mow
,
V. C.
, and
Huiskes
,
R.
,
2005
,
Basic Orthopaedic Biomechanics & Mechano-Biology
,
Lippincott Williams & Wilkins
, Philadelphia, PA.
75.
Canal
,
C. E.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2008
, “
Two-Dimensional Strain Fields on the Cross-Section of the Bovine Humeral Head Under Contact Loading
,”
J. Biomech.
,
41
(
15
), pp.
3145
3151
.10.1016/j.jbiomech.2008.08.031
76.
Wang
,
C. C.
,
Deng
,
J.-M.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2002
, “
An Automated Approach for Direct Measurement of Two-Dimensional Strain Distributions Within Articular Cartilage Under Unconfined Compression
,”
ASME J. Biomech. Eng.
,
124
(
5
), pp.
557
567
.10.1115/1.1503795
77.
Oungoulian
,
S. R.
,
Hehir
,
K. E.
,
Zhu
,
K.
,
Willis
,
C. E.
,
Marinescu
,
A. G.
,
Merali
,
N.
,
Ahmad
,
C. S.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2014
, “
Effect of Glutaraldehyde Fixation on the Frictional Response of Immature Bovine Articular Cartilage Explants
,”
J. Biomech.
,
47
(
3
), pp.
694
701
.10.1016/j.jbiomech.2013.11.043
78.
Speer
,
D. P.
, and
Dahners
,
L.
,
1979
, “
The Collagenous Architecture of Articular Cartilage: Correlation of Scanning Electron Microscopy and Polarized Light Microscopy Observations
,”
Clin. Orthop. Relat. Res.
, 2(
139
), pp.
267
275
.https://pubmed.ncbi.nlm.nih.gov/455843/
79.
Ateshian
,
G. A.
,
2009
, “
The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication
,”
J. Biomech.
,
42
(
9
), pp.
1163
1176
.10.1016/j.jbiomech.2009.04.040
80.
Zimmerman
,
B. K.
, and
Ateshian
,
G. A.
,
2018
, “
A Surface-to-Surface Finite Element Algorithm for Large Deformation Frictional Contact in Febio
,”
ASME J. Biomech. Eng.
,
140
(
8
), p.
081013
.10.1115/1.4040497
81.
Ateshian
,
G.
,
Wang
,
H.
, and
Lai
,
W.
,
1998
, “
The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage
,”
ASME J. Tribol.
, 120(2), pp.
241
248
.10.1115/1.2834416
82.
Benninghoff
,
A.
,
1925
, “
Form Und Bau Der Gelenkknorpel in Ihren Beziehungen Zur Funktion
,”
Z. Für Zellforschung Und Mikroskopische Anatomie
,
2
(
5
), pp.
783
862
.10.1007/BF00583443
83.
De Borst
,
R.
,
Sluys
,
L. J.
,
Muhlhaus
,
H.-B.
, and
Pamin
,
J.
,
1993
, “
Fundamental Issues in Finite Element Analyses of Localization of Deformation
,”
Eng. Comput.
,
10
(
2
), pp.
99
121
.10.1108/eb023897
84.
Pijaudier-Cabot
,
G.
, and
Bažant
,
Z. P.
,
1987
, “
Nonlocal Damage Theory
,”
J. Eng. Mech.
,
113
(
10
), pp.
1512
1533
.10.1061/(ASCE)0733-9399(1987)113:10(1512)
85.
Ambrosi
,
D.
,
Ateshian
,
G. A.
,
Arruda
,
E. M.
,
Cowin
,
S. C.
,
Dumais
,
J.
,
Goriely
,
A.
,
Holzapfel
,
G. A.
, et al.,
2011
, “
Perspectives on Biological Growth and Remodeling
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
863
883
.10.1016/j.jmps.2010.12.011
86.
Cyron
,
C. J.
, and
Humphrey
,
J. D.
,
2017
, “
Growth and Remodeling of Load-Bearing Biological Soft Tissues
,”
Meccanica
,
52
(
3
), pp.
645
664
.10.1007/s11012-016-0472-5
87.
Voyiadjis
,
G. Z.
,
Shojaei
,
A.
, and
Li
,
G.
,
2011
, “
A Thermodynamic Consistent Damage and Healing Model for Self-Healing Materials
,”
Int. J. Plasticity
,
27
(
7
), pp.
1025
1044
.10.1016/j.ijplas.2010.11.002
88.
Darabi
,
M. K.
,
Al-Rub
,
R. K. A.
, and
Little
,
D. N.
,
2012
, “
A Continuum Damage Mechanics Framework for Modeling Micro-Damage Healing
,”
Int. J. Solids Struct.
,
49
(
3–4
), pp.
492
513
.10.1016/j.ijsolstr.2011.10.017
89.
Barbero
,
E. J.
,
Greco
,
F.
, and
Lonetti
,
P.
,
2005
, “
Continuum Damage-Healing Mechanics With Application to Self-Healing Composites
,”
Int. J. Damage Mech.
,
14
(
1
), pp.
51
81
.10.1177/1056789505045928
90.
Buganza Tepole
,
A.
, and
Kuhl
,
E.
,
2016
, “
Computational Modeling of Chemo-Bio-Mechanical Coupling: A Systems-Biology Approach Toward Wound Healing
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
1
), pp.
13
30
.10.1080/10255842.2014.980821
91.
Ateshian
,
G.
, and
Humphrey
,
J.
,
2012
, “
Continuum Mixture Models of Biological Growth and Remodeling: Past Successes and Future Opportunities
,”
Annu. Rev. Biomed. Eng.
,
14
(
1
), pp.
97
111
.10.1146/annurev-bioeng-071910-124726
92.
Cyron
,
C. J.
,
Aydin
,
R.
, and
Humphrey
,
J. D.
,
2016
, “
A Homogenized Constrained Mixture (and Mechanical Analog) Model for Growth and Remodeling of Soft Tissue
,”
Biomech. Model. Mechanobiol.
,
15
(
6
), pp.
1389
1403
.10.1007/s10237-016-0770-9
93.
He
,
Y.
,
Zuo
,
D.
,
Hackl
,
K.
,
Yang
,
H.
,
Mousavi
,
S. J.
, and
Avril
,
S.
,
2019
, “
Gradient-Enhanced Continuum Models of Healing in Damaged Soft Tissues
,”
Biomech. Model. Mechanobiol.
,
18
(
5
), pp.
1443
1460
.10.1007/s10237-019-01155-z
94.
Humphrey
,
J.
,
2021
, “
Constrained Mixture Models of Soft Tissue Growth and Remodeling–Twenty Years After
,”
J. Elasticity
,
145
(
1–2
), pp.
49
75
.10.1007/s10659-020-09809-1
95.
Zuo
,
D.
,
He
,
Y.
,
Avril
,
S.
,
Yang
,
H.
, and
Hackl
,
K.
,
2022
, “
A Thermodynamic Framework for Unified Continuum Models for the Healing of Damaged Soft Biological Tissue
,”
J. Mech. Phys. Solids
,
158
, p.
104662
.10.1016/j.jmps.2021.104662
96.
Ateshian
,
G. A.
,
LaBelle
,
S. A.
, and
Weiss
,
J. A.
,
2024
, “
Continuum Growth Mechanics: Reconciling Two Common Frameworks
,”
ASME J. Biomech. Eng.
,
146
(
10
), p.
101003
.10.1115/1.4065309
97.
Zimmerman
,
B. K.
,
Datta
,
B.
,
Shi
,
R.
,
Schulman
,
R.
, and
Nguyen
,
T. D.
,
2024
, “
A Reactive Electrochemomechanical Theory for Growth and Remodeling of Polyelectrolyte Hydrogels and Application to Dynamic Polymerization of DNA Hydrogels
,”
J. Mech. Phys. Solids
,
186
, p.
105568
.10.1016/j.jmps.2024.105568
You do not currently have access to this content.