Abstract

High-grade knee laxity is associated with early anterior cruciate ligament (ACL) graft failure, poor function, and compromised clinical outcome. Yet, the specific ligaments and ligament properties driving knee laxity remain poorly understood. We described a Bayesian calibration methodology for predicting unknown ligament properties in a computational knee model. Then, we applied the method to estimate unknown ligament properties with uncertainty bounds using tibiofemoral kinematics and ACL force measurements from two cadaver knees that spanned a range of laxities; these knees were tested using a robotic manipulator. The unknown ligament properties were from the Bayesian set of plausible ligament properties, as specified by their posterior distribution. Finally, we developed a calibrated predictor of tibiofemoral kinematics and ACL force with their own uncertainty bounds. The calibrated predictor was developed by first collecting the posterior draws of the kinematics and ACL force that are induced by the posterior draws of the ligament properties and model parameters. Bayesian calibration identified unique ligament slack lengths for the two knee models and produced ACL force and kinematic predictions that were closer to the corresponding in vitro measurement than those from a standard optimization technique. This Bayesian framework quantifies uncertainty in both ligament properties and model outputs; an important step towards developing subject-specific computational models to improve treatment for ACL injury.

References

1.
Lohmander
,
L. S.
,
Ostenberg
,
A.
,
Englund
,
M.
, and
Roos
,
H.
,
2004
, “
High Prevalence of Knee Osteoarthritis, Pain, and Functional Limitations in Female Soccer Players Twelve Years After Anterior Cruciate Ligament Injury
,”
Arthritis Rheumatol.
,
50
(
10
), pp.
3145
3152
.10.1002/art.20589
2.
Sanders
,
T. L.
,
Maradit Kremers
,
H.
,
Bryan
,
A. J.
,
Larson
,
D. R.
,
Dahm
,
D. L.
,
Levy
,
B. A.
,
Stuart
,
M. J.
, and
Krych
,
A. J.
,
2016
, “
Incidence of Anterior Cruciate Ligament Tears and Reconstruction: A 21-Year Population-Based Study
,”
Am. J. Sports Med.
,
44
(
6
), pp.
1502
1507
.10.1177/0363546516629944
3.
Owens
,
B. D.
,
Mountcastle
,
S. B.
,
Dunn
,
W. R.
,
DeBerardino
,
T. M.
, and
Taylor
,
D. C.
,
2007
, “
Incidence of Anterior Cruciate Ligament Injury Among Active Duty U.S. Military Servicemen and Servicewomen
,”
Mil. Med.
,
172
(
1
), pp.
90
91
.10.7205/MILMED.172.1.90
4.
Herzog
,
M. M.
,
Marshall
,
S. W.
,
Lund
,
J. L.
,
Pate
,
V.
, and
Spang
,
J. T.
,
2017
, “
Cost of Outpatient Arthroscopic Anterior Cruciate Ligament Reconstruction Among Commercially Insured Patients in the United States, 2005-2013
,”
Orthop. J. Sports Med.
,
5
(
1
), epub.10.1177/2325967116684776
5.
Mather
,
R. C.
, 3rd
,
Koenig
,
L.
,
Kocher
,
M. S.
,
Dall
,
T. M.
,
Gallo
,
P.
,
Scott
,
D. J.
,
Bach
,
B. R.
, Jr.
, and
Spindler
,
K. P.
,
the MOON Knee Group
2013
, “
Societal and Economic Impact of Anterior Cruciate Ligament Tears
,”
J. Bone Jt. Surg. Am.
,
95
(
19
), pp.
1751
1759
.10.2106/JBJS.L.01705
6.
Uhorchak
,
J. M.
,
Scoville
,
C. R.
,
Williams
,
G. N.
,
Arciero
,
R. A.
,
St Pierre
,
P.
, and
Taylor
,
D. C.
,
2003
, “
Risk Factors Associated With Noncontact Injury of the Anterior Cruciate Ligament: A Prospective Four-Year Evaluation of 859 West Point Cadets
,”
Am. J. Sports Med.
,
31
(
6
), pp.
831
842
.10.1177/03635465030310061801
7.
Vacek
,
P. M.
,
Slauterbeck
,
J. R.
,
Tourville
,
T. W.
,
Sturnick
,
D. R.
,
Holterman
,
L.-A.
,
Smith
,
H. C.
,
Shultz
,
S. J.
, et al.,
2016
, “
Multivariate Analysis of the Risk Factors for First-Time Noncontact ACL Injury in High School and College Athletes: A Prospective Cohort Study With a Nested, Matched Case-Control Analysis
,”
Am. J. Sports Med.
,
44
(
6
), pp.
1492
1501
.10.1177/0363546516634682
8.
Magnussen
,
R. A.
,
Reinke
,
E. K.
,
Huston
,
L. J.
,
Andrish
,
J. T.
,
Jones
,
M. H.
,
Parker
,
R. D.
,
McCarty
,
E. C.
, et al.,
2016
, “
Factors Associated With High-Grade Lachman, Pivot Shift, and Anterior Drawer at the Time of Anterior Cruciate Ligament Reconstruction
,”
Arthroscopy: J. Arthroscopic Relat. Surg.
,
32
(
6
), pp.
1080
1085
.10.1016/j.arthro.2015.11.018
9.
Jones
,
M. H.
,
Oak
,
S. R.
,
Andrish
,
J. T.
,
Brophy
,
R. H.
,
Cox
,
C. L.
,
Dunn
,
W. R.
,
Flanigan
,
D. C.
, et al.,
2019
, “
Predictors of Radiographic Osteoarthritis 2 to 3 Years After Anterior Cruciate Ligament Reconstruction: Data From the MOON on-Site Nested Cohort
,”
Orthop. J. Sports Med.
,
7
(
7_suppl5
), p.
2325967119S0034
.10.1177/2325967119S00348
10.
Kocher
,
M. S.
,
Steadman
,
J. R.
,
Briggs
,
K. K.
,
Sterett
,
W. I.
, and
Hawkins
,
R. J.
,
2004
, “
Relationships Between Objective Assessment of Ligament Stability and Subjective Assessment of Symptoms and Function After Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
32
(
3
), pp.
629
634
.10.1177/0363546503261722
11.
Leitze
,
Z.
,
Losee
,
R. E.
,
Jokl
,
P.
,
Johnson
,
T. R.
, and
Feagin
,
J. A.
,
2005
, “
Implications of the Pivot Shift in the ACL-Deficient Knee
,”
Clin. Orthop. Relat. Res.
,
436
, pp.
229
236
.10.1097/01.blo.0000160026.14363.22
12.
Noyes
,
F. R.
,
Huser
,
L. E.
, and
Palmer
,
M.
,
2021
, “
A Biomechanical Study of Pivot-Shift and Lachman Translations in Anterior Cruciate Ligament-Sectioned Knees, Anterior Cruciate Ligament-Reconstructed Knees, and Knees With Partial Anterior Cruciate Ligament Graft Slackening: Instrumented Lachman Tests Statistically Correlate and Supplement Subjective Pivot-Shift Tests
,”
Arthroscopy
,
37
(
2
), pp.
672
681
.10.1016/j.arthro.2020.09.047
13.
Roth
,
J. D.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2015
, “
Native Knee Laxities at 0°, 45°, and 90° of Flexion and Their Relationship to the Goal of the Gap-Balancing Alignment Method of Total Knee Arthroplasty
,”
J. Bone Jt. Surg. Am.
,
97
(
20
), pp.
1678
1684
.10.2106/JBJS.N.01256
14.
Imhauser
,
C. W.
,
Kent
,
R. N.
, 3rd
,
Boorman-Padgett
,
J.
,
Thein
,
R.
,
Wickiewicz
,
T. L.
, and
Pearle
,
A. D.
,
2017
, “
New Parameters Describing How Knee Ligaments Carry Force in Situ Predict Interspecimen Variations in Laxity During Simulated Clinical Exams
,”
J. Biomech.
,
64
, pp.
212
218
.10.1016/j.jbiomech.2017.09.032
15.
Kent
,
R. N.
, 3rd
,
Boorman-Padgett
,
J. F.
,
Thein
,
R.
,
van der List
,
J. P.
,
Nawabi
,
D. H.
,
Wickiewicz
,
T. L.
,
Imhauser
,
C. W.
, and
Pearle
,
A. D.
,
2017
, “
High Interspecimen Variability in Engagement of the Anterolateral Ligament: An In Vitro Cadaveric Study
,”
Clin. Orthop. Relat. Res.
,
475
(
10
), pp.
2438
2444
.10.1007/s11999-017-5375-9
16.
Kent
,
R. N.
,
Imhauser
,
C. W.
,
Thein
,
R.
,
Marom
,
N.
,
Wickiewicz
,
T. L.
,
Nawabi
,
D. H.
, and
Pearle
,
A. D.
,
2020
, “
Engagement of the Secondary Ligamentous and Meniscal Restraints Relative to the Anterior Cruciate Ligament Predicts Anterior Knee Laxity
,”
Am. J. Sports Med
,
48
(
1
), pp.
109
116
.10.1177/0363546519888488
17.
Pearle
,
A. D.
,
Nawabi
,
D. H.
,
Marom
,
N.
,
Wickiewicz
,
T. L.
, and
Imhauser
,
C. W.
,
2021
, “
Editorial Commentary: The Pivot Shift and Lachman Examinations: Teammates With Distinct Roles
,”
Arthroscopy
,
37
(
2
), pp.
682
685
.10.1016/j.arthro.2020.12.001
18.
Moglo
,
K. E.
, and
Shirazi-Adl
,
A.
,
2005
, “
Cruciate Coupling and Screw-Home Mechanism in Passive Knee Joint During Extension–Flexion
,”
J. Biomech.
,
38
(
5
), pp.
1075
1083
.10.1016/j.jbiomech.2004.05.033
19.
Kia
,
M.
,
Wright
,
T. M.
,
Cross
,
M. B.
,
Mayman
,
D. J.
,
Pearle
,
A. D.
,
Sculco
,
P. K.
,
Westrich
,
G. H.
, and
Imhauser
,
C. W.
,
2018
, “
Femoral Component External Rotation Affects Knee Biomechanics: A Computational Model of Posterior-Stabilized TKA
,”
Clin. Orthop. Relat. Res.
,
476
(
1
), pp.
113
123
.10.1007/s11999.0000000000000020
20.
Guess
,
T. M.
,
Thiagarajan
,
G.
,
Kia
,
M.
, and
Mishra
,
M.
,
2010
, “
A Subject Specific Multibody Model of the Knee With Menisci
,”
Med. Eng. Phys.
,
32
(
5
), pp.
505
515
.10.1016/j.medengphy.2010.02.020
21.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
Validation of a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
29
(
7
), pp.
955
961
.10.1016/0021-9290(95)00149-2
22.
Smith
,
C. R.
,
Lenhart
,
R. L.
,
Kaiser
,
J.
,
Vignos
,
M. F.
, and
Thelen
,
D. G.
,
2015
, “
Influence of Ligament Properties on Tibiofemoral Mechanics in Walking
,”
J. Knee Surg.
,
29
(
02
), pp.
099
106
.10.1055/s-0035-1558858
23.
Adouni
,
M.
,
Faisal
,
T. R.
, and
Dhaher
,
Y. Y.
,
2022
, “
Sensitivity Analysis of the Knee Ligament Forces to the Surgical Design Variation During Anterior Cruciate Ligament Reconstruction: A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
25
(
9
), pp.
1063
1071
.10.1080/10255842.2021.2006647
24.
Shelburne
,
K. B.
, and
Pandy
,
M. G.
,
1997
, “
A Musculoskeletal Model of the Knee for Evaluating Ligament Forces During Isometric Contractions
,”
J. Biomech.
,
30
(
2
), pp.
163
176
.10.1016/S0021-9290(96)00119-4
25.
Shelburne
,
K. B.
,
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Torry
,
M. R.
,
2004
, “
Pattern of Anterior Cruciate Ligament Force in Normal Walking
,”
J. Biomech.
,
37
(
6
), pp.
797
805
.10.1016/j.jbiomech.2003.10.010
26.
Bloemker
,
K. H.
,
Guess
,
T. M.
,
Maletsky
,
L.
, and
Dodd
,
K.
,
2012
, “
Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths
,”
Open Biomed. Eng. J.
,
6
(
1
), pp.
33
41
.10.2174/1874120701206010033
27.
Zaylor
,
W.
,
Stulberg
,
B. N.
, and
Halloran
,
J. P.
,
2019
, “
Use of Distraction Loading to Estimate Subject-Specific Knee Ligament Slack Lengths
,”
J. Biomech.
,
92
, pp.
1
5
.10.1016/j.jbiomech.2019.04.040
28.
Harris
,
M. D.
,
Cyr
,
A. J.
,
Ali
,
A. A.
,
Fitzpatrick
,
C. K.
,
Rullkoetter
,
P. J.
,
Maletsky
,
L. P.
, and
Shelburne
,
K. B.
,
2016
, “
A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity
,”
ASME J. Biomech. Eng.
,
138
(
8
), p.
081004
.10.1115/1.4033882
29.
Navacchia
,
A.
,
Bates
,
N. A.
,
Schilaty
,
N. D.
,
Krych
,
A. J.
, and
Hewett
,
T. E.
,
2019
, “
Knee Abduction and Internal Rotation Moments Increase ACL Force During Landing Through the Posterior Slope of the Tibia
,”
J. Orthop. Res.
,
37
(
8
), pp.
1730
1742
.10.1002/jor.24313
30.
Ewing
,
J. A.
,
Kaufman
,
M. K.
,
Hutter
,
E. E.
,
Granger
,
J. F.
,
Beal
,
M. D.
,
Piazza
,
S. J.
, and
Siston
,
R. A.
,
2016
, “
Estimating Patient-Specific Soft-Tissue Properties in a TKA Knee
,”
J. Orthop. Res.
,
34
(
3
), pp.
435
443
.10.1002/jor.23032
31.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
32.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
,
2018
,
The Design and Analysis of Computer Experiments
,
Springer-Verlag, Inc.
, New York.
33.
Rougier
,
J.
,
Sexton
,
D. M. H.
,
Murphy
,
J. M.
, and
Stainforth
,
D.
,
2009
, “
Analyzing the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles From Different but Related Experiments
,”
J. Clim.
,
22
(
13
), pp.
3540
3557
.10.1175/2008JCLI2533.1
34.
Challenor
,
P. G.
,
Hankin
,
R. K. S.
, and
Marsh
,
R.
,
2006
, “
Towards the Probability of Rapid Climate Change
,”
Avoiding Dangerous Climate Change
, Schellnhuber, H. J., Cramer, W., Nakicenovic, N., Wigley, T., Yohe, G., eds., Cambridge University Press, Cambridge, UK, pp.
55
63
.https://www.researchgate.net/publication/313096853_Towards_the_probability_of_rapid_climate_change
35.
Zhang
,
W.
,
Bostanabad
,
R.
,
Liang
,
B.
,
Su
,
X.
,
Zeng
,
D.
,
Bessa
,
M. A.
,
Wang
,
Y.
,
Chen
,
W.
, and
Cao
,
J.
,
2019
, “
A Numerical Bayesian-Calibrated Characterization Method for Multiscale Prepreg Preforming Simulations With Tension-Shear Coupling
,”
Compos. Sci. Technol.
,
170
, pp.
15
24
.10.1016/j.compscitech.2018.11.019
36.
Dev
,
P.
,
Harris
,
D.
,
Gutierrez
,
D.
,
Shah
,
A.
, and
Senger
,
S.
,
2002
, “
End-to-End Performance Measurement of Internet Based Medical Applications
,”
Proc. AMIA Symp.
, pp.
205
209
.https://pubmed.ncbi.nlm.nih.gov/12463816/
37.
Cressie
,
N. A. C.
,
1993
, “
Statistics for Spatial Data
, Revised Edition,” John Wiley and Sons, Hoboken, NJ.
38.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
, Engineering Design via Surrogate Modelling: A Practical Guide, John Wiley and Sons, Hoboken, NJ.
39.
Imhauser
,
C.
,
Mauro
,
C.
,
Choi
,
D.
,
Rosenberg
,
E.
,
Mathew
,
S.
,
Nguyen
,
J.
,
Ma
,
Y.
, and
Wickiewicz
,
T.
,
2013
, “
Abnormal Tibiofemoral Contact Stress and Its Association With Altered Kinematics After Center-Center Anterior Cruciate Ligament Reconstruction:An In Vitro Study
,”
Am. J. Sports Med.
,
41
(
4
), pp.
815
825
.10.1177/0363546512475205
40.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
41.
Amirtharaj
,
M. J.
,
Hardy
,
B. M.
,
Kent
,
R. N.
, 3rd
,
Nawabi
,
D. H.
,
Wickiewicz
,
T. L.
,
Pearle
,
A. D.
, and
Imhauser
,
C. W.
,
2018
, “
Automated, Accurate, and Three-Dimensional Method for Calculating Sagittal Slope of the Tibial Plateau
,”
J. Biomech.
,
79
, pp.
212
217
.10.1016/j.jbiomech.2018.07.047
42.
Camp
,
C. L.
,
Jahandar
,
H.
,
Sinatro
,
A. M.
,
Imhauser
,
C. W.
,
Altchek
,
D. W.
, and
Dines
,
J. S.
,
2018
, “
Quantitative Anatomic Analysis of the Medial Ulnar Collateral Ligament Complex of the Elbow
,”
Orthop. J. Sports Med.
,
6
(
3
), pp.
232596711876275
2325967118762751
.10.1177/2325967118762751
43.
Marom
,
N.
,
Ouanezar
,
H.
,
Jahandar
,
H.
,
Zayyad
,
Z. A.
,
Fraychineaud
,
T.
,
Hurwit
,
D.
,
Imhauser
,
C. W.
,
Wickiewicz
,
T. L.
,
Pearle
,
A. D.
, and
Nawabi
,
D. H.
,
2020
, “
Lateral Extra-Articular Tenodesis Reduces Anterior Cruciate Ligament Graft Force and Anterior Tibial Translation in Response to Applied Pivoting and Anterior Drawer Loads
,”
Am. J. Sports Med.
,
48
(
13
), pp.
3183
3193
.10.1177/0363546520959322
44.
Colbrunn
,
R. W.
,
Dumpe
,
J. E.
,
Nagle
,
T. F.
,
Kolmodin
,
J. D.
,
Barsoum
,
W. K.
, and
Saluan
,
P. M.
,
2019
, “
Robotically Simulated Pivot Shift That Represents the Clinical Exam
,”
J. Orthop. Res.
,
37
(
12
), pp.
2601
2608
.10.1002/jor.24439
45.
Fujie
,
H.
,
Livesay
,
G. A.
,
Woo
,
S. L.
,
Kashiwaguchi
,
S.
, and
Blomstrom
,
G.
,
1995
, “
The Use of a Universal Force-Moment Sensor to Determine in-Situ Forces in Ligaments: A New Methodology
,”
ASME J. Biomech. Eng.
,
117
(
1
), pp.
1
7
.10.1115/1.2792266
46.
Kia
,
M.
,
Schafer
,
K.
,
Lipman
,
J.
,
Cross
,
M.
,
Mayman
,
D.
,
Pearle
,
A.
,
Wickiewicz
,
T.
, and
Imhauser
,
C.
,
2016
, “
A Multibody Knee Model Corroborates Subject-Specific Experimental Measurements of Low Ligament Forces and Kinematic Coupling During Passive Flexion
,”
ASME J. Biomech. Eng.
,
138
(
5
), p.
051010
.10.1115/1.4032850
47.
Sturnick
,
D. R.
,
Vacek
,
P. M.
,
DeSarno
,
M. J.
,
Gardner-Morse
,
M. G.
,
Tourville
,
T. W.
,
Slauterbeck
,
J. R.
,
Johnson
,
R. J.
,
Shultz
,
S. J.
, and
Beynnon
,
B. D.
,
2015
, “
Combined Anatomic Factors Predicting Risk of Anterior Cruciate Ligament Injury for Males and Females
,”
Am. J. Sports Med.
,
43
(
4
), pp.
839
847
.10.1177/0363546514563277
48.
Hara
,
K.
,
Mochizuki
,
T.
,
Sekiya
,
I.
,
Yamaguchi
,
K.
,
Akita
,
K.
, and
Muneta
,
T.
,
2009
, “
Anatomy of Normal Human Anterior Cruciate Ligament Attachments Evaluated by Divided Small Bundles
,”
Am. J. Sports Med.
,
37
(
12
), pp.
2386
2391
.10.1177/0363546509340404
49.
Butler
,
D. L.
,
Guan
,
Y.
,
Kay
,
M. D.
,
Cummings
,
J. F.
,
Feder
,
S. M.
, and
Levy
,
M. S.
,
1992
, “
Location-Dependent Variations in the Material Properties of the Anterior Cruciate Ligament
,”
J. Biomech.
,
25
(
5
), pp.
511
518
.10.1016/0021-9290(92)90091-E
50.
Suzuki
,
D.
, and
Otsubo
,
H.
,
2016
, “
The Anatomical Features of ACL Insertion Sites and Their Implications for Multi-Bundle Reconstruction
,”
ACL Injury and Its Treatment
,
M.
Ochi
,
K.
Shino
,
K.
Yasuda
, and
M.
Kurosaka
, eds.,
Springer
,
Tokyo
, Japan, pp.
17
26
.
51.
Harner
,
C. D.
,
Xerogeanes
,
J. W.
,
Livesay
,
G. A.
,
Carlin
,
G. J.
,
Smith
,
B. A.
,
Kusayama
,
T.
,
Kashiwaguchi
,
S.
, and
Woo
,
S. L. Y.
,
1995
, “
The Human Posterior Cruciate Ligament Complex: An Interdisciplinary Study: Ligament Morphology and Biomechanical Evaluation
,”
Am. J. Sports Med.
,
23
(
6
), pp.
736
745
.10.1177/036354659502300617
52.
Robinson
,
J. R.
,
Bull
,
A. M. J.
, and
Amis
,
A. A.
,
2005
, “
Structural Properties of the Medial Collateral Ligament Complex of the Human Knee
,”
J. Biomech.
,
38
(
5
), pp.
1067
1074
.10.1016/j.jbiomech.2004.05.034
53.
Wilson
,
W. T.
,
Deakin
,
A. H.
,
Payne
,
A. P.
,
Picard
,
F.
, and
Wearing
,
S. C.
,
2012
, “
Comparative Analysis of the Structural Properties of the Collateral Ligaments of the Human Knee
,”
J. Orthop. Sports Phys. Ther.
,
42
(
4
), pp.
345
351
.10.2519/jospt.2012.3919
54.
Gottschalk, S., Lin, M.C., and Manocha, D., 1997, “OBBTree: A Hierarchical Structure for Rapid Interference Detection.”
Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques
, pp.171–180.10.1145/237170.237244
55.
Kennedy
,
M. I.
,
Claes
,
S.
,
Fuso
,
F. A.
,
Williams
,
B. T.
,
Goldsmith
,
M. T.
,
Turnbull
,
T. L.
,
Wijdicks
,
C. A.
, and
LaPrade
,
R. F.
,
2015
, “
The Anterolateral Ligament: An Anatomic, Radiographic, and Biomechanical Analysis
,”
Am J. Sports Med.
,
43
(
7
), pp.
1606
1615
.10.1177/0363546515578253
56.
Woo
,
S. L.
,
Hollis
,
J. M.
,
Adams
,
D. J.
,
Lyon
,
R. M.
, and
Takai
,
S.
,
1991
, “
Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex. The Effects of Specimen Age and Orientation
,”
Am. J. Sports Med.
,
19
(
3
), pp.
217
225
.10.1177/036354659101900303
57.
Hauch
,
K. N.
,
Villegas
,
D. F.
, and
Haut Donahue
,
T. L.
,
2010
, “
Geometry, Time-Dependent and Failure Properties of Human Meniscal Attachments
,”
J. Biomech.
,
43
(
3
), pp.
463
468
.10.1016/j.jbiomech.2009.09.043
58.
Loeppky
,
J. L.
,
Sacks
,
J.
, and
Welch
,
W. J.
,
2009
, “
Choosing the Sample Size of a Computer Experiment: A Practical Guide
,”
Technometrics
,
51
(
4
), pp.
366
376
.10.1198/TECH.2009.08040
59.
Schafer
,
K. A.
,
Tucker
,
S.
,
Griffith
,
T.
,
Sheikh
,
S.
,
Wickiewicz
,
T. L.
,
Nawabi
,
D. H.
,
Imhauser
,
C. W.
, and
Pearle
,
A. D.
,
2016
, “
Distribution of Force in the Medial Collateral Ligament Complex During Simulated Clinical Tests of Knee Stability
,”
Am. J. Sports Med.
,
44
(
5
), pp.
1203
1208
.10.1177/0363546515623510
60.
Thein
,
R.
,
Boorman-Padgett
,
J.
,
Stone
,
K.
,
Wickiewicz
,
T. L.
,
Imhauser
,
C. W.
, and
Pearle
,
A. D.
,
2016
, “
Biomechanical Assessment of the Anterolateral Ligament of the Knee: A Secondary Restraint in Simulated Tests of the Pivot Shift and of Anterior Stability
,”
J. Bone Jt. Surg. Am.
,
98
(
11
), pp.
937
943
.10.2106/JBJS.15.00344
61.
Kanamori
,
A.
,
Woo
,
S. L.
,
Ma
,
C. B.
,
Zeminski
,
J.
,
Rudy
,
T. W.
,
Li
,
G.
, and
Livesay
,
G. A.
,
2000
, “
The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology
,”
Arthroscopy
,
16
(
6
), pp.
633
639
.10.1053/jars.2000.7682
62.
LaPrade
,
R. F.
,
Engebretsen
,
A. H.
,
Ly
,
T. V.
,
Johansen
,
S.
,
Wentorf
,
F. A.
, and
Engebretsen
,
L.
,
2007
, “
The Anatomy of the Medial Part of the Knee
,”
J. Bone Jt. Surg. Am
,
89
(
9
), pp.
2000
2010
.10.2106/00004623-200709000-00016
63.
Nasu
,
H.
,
Nimura
,
A.
,
Yamaguchi
,
K.
, and
Akita
,
K.
,
2020
, “
Morphology of the Anterolateral Ligament: A Complex of Fibrous Tissues Spread to the Anterolateral Aspect of the Knee Joint
,”
Anat. Sci. Int.
,
95
(
4
), pp.
470
477
.10.1007/s12565-020-00543-1
64.
Xu
,
J.
,
Han
,
K.
,
Lee
,
T. Q.
,
Xu
,
C.
,
Su
,
W.
,
Chen
,
J.
,
Yu
,
J.
,
Dong
,
S.
, and
Zhao
,
J.
,
2022
, “
Anterolateral Structure Reconstruction Similarly Improves the Stability and Causes Less Overconstraint in Anterior Cruciate Ligament-Reconstructed Knees Compared With Modified Lemaire Lateral Extra-Articular Tenodesis: A Biomechanical Study
,”
Arthroscopy
,
38
(
3
), pp.
911
924
.10.1016/j.arthro.2021.06.023
65.
Smith
,
C. R.
,
Brandon
,
S. C. E.
, and
Thelen
,
D. G.
,
2019
, “
Can Altered Neuromuscular Coordination Restore Soft Tissue Loading Patterns in Anterior Cruciate Ligament and Menisci Deficient Knees During Walking?
,”
J. Biomech.
,
82
, pp.
124
133
.10.1016/j.jbiomech.2018.10.008
66.
Shin
,
C. S.
,
Chaudhari
,
A. M.
, and
Andriacchi
,
T. P.
,
2007
, “
The Influence of Deceleration Forces on ACL Strain During Single-Leg Landing: A Simulation Study
,”
J. Biomech.
,
40
(
5
), pp.
1145
1152
.10.1016/j.jbiomech.2006.05.004
67.
Andreassen
,
T. E.
,
Hamilton
,
L. D.
,
Hume
,
D.
,
Higinbotham
,
S. E.
,
Behnam
,
Y.
,
Clary
,
C.
, and
Shelburne
,
K. B.
,
2021
, “
Apparatus for In Vivo Knee Laxity Assessment Using High-Speed Stereo Radiography
,”
ASME J. Med. Devices
,
15
(
4
), p.
041004
.10.1115/1.4051834
68.
Mills
,
O. S.
, and
Hull
,
M. L.
,
1991
, “
Apparatus to Obtain Rotational Flexibility of the Human Knee Under Moment Loads In Vivo
,”
J. Biomech.
,
24
(
6
), pp.
351
369
.10.1016/0021-9290(91)90025-I
69.
Shultz
,
S. J.
,
Shimokochi
,
Y.
,
Nguyen
,
A. D.
,
Schmitz
,
R. J.
,
Beynnon
,
B. D.
, and
Perrin
,
D. H.
,
2007
, “
Measurement of Varus-Valgus and Internal-External Rotational Knee Laxities in Vivo–Part I: Assessment of Measurement Reliability and Bilateral Asymmetry
,”
J. Orthop. Res.
,
25
(
8
), pp.
981
988
.10.1002/jor.20397
You do not currently have access to this content.