Abstract

Right Ventricular (RV) dysfunction is routinely assessed with echocardiographic-derived global longitudinal strain (GLS). GLS is measured from a two-dimensional echo image and is increasingly accepted as a means for assessing RV function. However, any two-dimensional (2D) analysis cannot visualize the asymmetrical deformation of the RV nor visualize strain over the entire RV surface. We believe three-dimensional surface (3DS) strain, obtained from 3D echo will better evaluate myocardial mechanics. Components of 3DS strain (longitudinal, LS; circumferential, CS; longitudinal-circumferential shear, ɣCL; principal strains PSMax and PSMin; max shear, ɣMax; and principal angle θMax) were computed from RV surface meshes obtained with 3D echo from 50 children with associated pulmonary arterial hypertension (PAH), 43 children with idiopathic PAH, and 50 healthy children by computing strains from a discretized displacement field. All 3DS freewall (FW) normal strain (LS, CS, PSMax, and PSMin) showed significant decline at end-systole in PH groups (p < 0.0001 for all), as did FW-ɣMax (p = 0.0012). FW-θMax also changed in disease (p < 0.0001). Limits of agreement analysis suggest that 3DS LS, PSMax, and PSMin are related to GLS. 3DS strains showed significant heterogeneity over the 3D surface of the RV. Components of 3DS strain agree with existing clinical strain measures, well classify normal -versus- PAH subjects, and suggest that strains change direction on the myocardial surface due to disease. This last finding is similar to that of myocardial fiber realignment in disease, but further work is needed to establish true associations.

References

1.
D'Alonzo
,
G. E.
,
Barst
,
R. J.
,
Ayres
,
S. M.
,
Bergofsky
,
E. H.
,
Brundage
,
B. H.
,
Detre
,
K. M.
,
Fishman
,
A. P.
, et al.,
1991
, “
Survival in Patients With Primary Pulmonary Hypertension: Results from a National Prospective Registry
,”
Ann. Intern. Med.
,
115
(
5
), pp.
343
349
.10.7326/0003-4819-115-5-343
2.
Simon
,
M. A.
, and
Pinsky
,
M. R.
,
2011
, “
Right Ventricular Dysfunction and Failure in Chronic Pressure Overload
,”
Cardiol. Res. Pract.
,
2011
, p.
568095
.10.4061/2011/568095
3.
Dutta
,
T.
, and
Aronow
,
W. S.
,
2017
, “
Echocardiographic Evaluation of the Right Ventricle: Clinical Implications
,”
Clin. Cardiol.
,
40
(
8
), pp.
542
548
.10.1002/clc.22694
4.
Jone
,
P.-N.
,
Duchateau
,
N.
,
Pan
,
Z.
,
Ivy
,
D. D.
, and
Moceri
,
P.
,
2021
, “
Right Ventricular Area Strain From 3-Dimensional Echocardiography: Mechanistic Insight of Right Ventricular Dysfunction in Pediatric Pulmonary Hypertension
,”
J. Heart Lung Transplant.
,
40
(
2
), pp.
138
148
.10.1016/j.healun.2020.11.005
5.
Jone
,
P.-N.
,
Duchateau
,
N.
,
Pan
,
Z.
,
Ivy
,
D.
, and
Moceri
,
P.
,
2019
, “
Three Dimensional Right Ventricular Strain in Pediatric Pulmonary Hypertension
,”
J. Am. Coll. Cardiol.
,
73
(
9
), pp.
1910
1910
.10.1016/S0735-1097(19)32516-1
6.
Ishizu
,
T.
,
Seo
,
Y.
,
Atsumi
,
A.
,
Tanaka
,
Y. O.
,
Yamamoto
,
M.
,
Machino-Ohtsuka
,
T.
,
Horigome
,
H.
, et al.,
2017
, “
Global and Regional Right Ventricular Function Assessed by Novel Three-Dimensional Speckle-Tracking Echocardiography
,”
J. Am. Soc. Echocardiogr.
,
30
(
12
), pp.
1203
1213
.10.1016/j.echo.2017.08.007
7.
Genovese
,
D.
,
Rashedi
,
N.
,
Weinert
,
L.
,
Narang
,
A.
,
Addetia
,
K.
,
Patel
,
A. R.
,
Prater
,
D.
, et al.,
2019
, “
Machine Learning-Based Three-Dimensional Echocardiographic Quantification of Right Ventricular Size and Function: Validation Against Cardiac Magnetic Resonance
,”
J. Am. Soc. Echocardiogr.
,
32
(
8
), pp.
969
977
.10.1016/j.echo.2019.04.001
8.
Gorcsan
,
J.
, and
Tanaka
,
H.
,
2011
, “
Are New Myocardial Tracking Systems of Three-Dimensional Strain a Reality in Daily Clinical Practice?
,”
Rev. Esp. Cardiol.
,
64
(
12
), pp.
1082
1089
.10.1016/j.recesp.2011.08.004
9.
Watson
,
S. R.
,
Dormer
,
J. D.
, and
Fei
,
B.
,
2018
, “
Imaging Technologies for Cardiac Fiber and Heart Failure: A Review
,”
Heart Fail. Rev.
,
23
(
2
), pp.
273
289
.10.1007/s10741-018-9684-1
10.
Haddad
,
F.
,
Hunt
,
S. A.
,
Rosenthal
,
D. N.
, and
Murphy
,
D. J.
,
2008
, “
Right Ventricular Function in Cardiovascular Disease, Part I: Anatomy, Physiology, Aging, and Functional Assessment of the Right Ventricle
,”
Circulation
,
117
(
11
), pp.
1436
1448
.10.1161/CIRCULATIONAHA.107.653576
11.
Liu
,
Y.
,
Wang
,
Y.
,
Wang
,
Y.
, and
Wen
,
Z.
,
2017
, “
Evaluation of Two-Dimensional Strain Echocardiography for Quantifying Right Ventricular Function in Patients With Pulmonary Arterial Hypertension
,”
Exp. Ther. Med.
,
14
(
2
), pp.
1248
1252
.10.3892/etm.2017.4581
12.
Agger
,
P.
,
Lakshminrusimha
,
S.
,
Laustsen
,
C.
,
Gugino
,
S.
,
Frandsen
,
J. R.
,
Smerup
,
M.
,
Anderson
,
R. H.
, et al.,
2016
, “
The Myocardial Architecture Changes in Persistent Pulmonary Hypertension of the Newborn in an Ovine Animal Model
,”
Pediatr. Res.
,
79
(
4
), pp.
565
574
.10.1038/pr.2015.263
13.
Agger
,
P.
,
Ilkjær
,
C.
,
Laustsen
,
C.
,
Smerup
,
M.
,
Frandsen
,
J. R.
,
Ringgaard
,
S.
,
Pedersen
,
M.
, et al.,
2017
, “
Changes in Overall Ventricular Myocardial Architecture in the Setting of a Porcine Animal Model of Right Ventricular Dilation
,”
J. Cardiovasc. Magn. Reson.
,
19
(
1
), p.
93
.10.1186/s12968-017-0404-0
14.
Hill
,
M. R.
,
Simon
,
M. A.
,
Valdez-Jasso
,
D.
,
Zhang
,
W.
,
Champion
,
H. C.
, and
Sacks
,
M. S.
,
2014
, “
Structural and Mechanical Adaptations of Right Ventricle Free Wall Myocardium to Pressure Overload
,”
Ann. Biomed. Eng.
,
42
(
12
), pp.
2451
2465
.10.1007/s10439-014-1096-3
15.
Park
,
D. W.
,
Sebastiani
,
A.
,
Yap
,
C. H.
,
Simon
,
M. A.
, and
Kim
,
K.
,
2016
, “
Quantification of Coupled Stiffness and Fiber Orientation Remodeling in Hypertensive Rat Right-Ventricular Myocardium Using 3D Ultrasound Speckle Tracking With Biaxial Testing
,”
PLoS One
,
11
(
10
), p.
e0165320
.10.1371/journal.pone.0165320
16.
Avazmohammadi
,
R.
,
Hill
,
M.
,
Simon
,
M.
, and
Sacks
,
M.
,
2017
, “
Transmural Remodeling of Right Ventricular Myocardium in Response to Pulmonary Arterial Hypertension.
,”
APL Bioeng.
,
1
(
1
), p.
016105
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224170/
17.
Avazmohammadi
,
R.
,
Mendiola
,
E. A.
,
Li
,
D. S.
,
Vanderslice
,
P.
,
Dixon
,
R. A. F.
, and
Sacks
,
M. S.
,
2019
, “
Interactions Between Structural Remodeling and Volumetric Growth in Right Ventricle in Response to Pulmonary Arterial Hypertension.
,”
ASME J. Biomech. Eng.
,
141
(
9
), p.
091016
.10.1115/1.4044174
18.
Sharifi Kia
,
D.
,
Benza
,
E.
,
Bachman
,
T. N.
,
Tushak
,
C.
,
Kim
,
K.
, and
Simon
,
M. A.
,
2020
, “
Angiotensin Receptor-Neprilysin Inhibition Attenuates Right Ventricular Remodeling in Pulmonary Hypertension.
,”
J. Am. Heart Assoc.
,
9
(
13
), p.
e015708
.10.1161/JAHA.119.015708
19.
Sharifi Kia
,
D.
,
Kim
,
K.
, and
Simon
,
M. A.
,
2021
, “
Current Understanding of the Right Ventricle Structure and Function in Pulmonary Arterial Hypertension
,”
Front. Physiol.
,
12
, p.
641310
.10.3389/fphys.2021.641310
20.
Jone
,
P.-N.
,
Schäfer
,
M.
,
Pan
,
Z.
,
Bremen
,
C.
, and
Ivy
,
D. D.
,
2018
, “
3D Echocardiographic Evaluation of Right Ventricular Function and Strain: A Prognostic Study in Paediatric Pulmonary Hypertension
,”
Eur. Heart J. Cardiovasc. Imaging
,
19
(
9
), pp.
1026
1033
.10.1093/ehjci/jex205
21.
Jone
,
P. N.
,
Schäfer
,
M.
,
Pan
,
Z.
, and
Ivy
,
D. D.
,
2019
, “
Right Ventricular-Arterial Coupling Ratio Derived From 3-Dimensional Echocardiography Predicts Outcomes in Pediatric Pulmonary Hypertension
,”
Circ. Cardiovasc. Imaging
,
12
(
1
), p.
e008176
.10.1161/CIRCIMAGING.118.008176
22.
Abman
,
S. H.
,
Hansmann
,
G.
,
Archer
,
S. L.
,
Ivy
,
D. D.
,
Adatia
,
I.
,
Chung
,
W. K.
,
Hanna
,
B. D.
, et al.,
2015
, “
Pediatric Pulmonary Hypertension: Guidelines From the American Heart Association and American Thoracic Society
,”
Circulation
,
132
(
21
), pp.
2037
2099
.10.1161/CIR.0000000000000329
23.
Claus
,
P.
,
Omar
,
A. M. S.
,
Pedrizzetti
,
G.
,
Sengupta
,
P. P.
, and
Nagel
,
E.
,
2015
, “
Tissue Tracking Technology for Assessing Cardiac Mechanics: Principles, Normal Values, and Clinical Applications
,”
JACC Cardiovasc. Imaging
,
8
(
12
), pp.
1444
1460
.10.1016/j.jcmg.2015.11.001
24.
Pedrizzetti
,
G.
,
Claus
,
P.
,
Kilner
,
P. J.
, and
Nagel
,
E.
,
2016
, “
Principles of Cardiovascular Magnetic Resonance Feature Tracking and Echocardiographic Speckle Tracking for Informed Clinical Use
,”
J. Cardiovasc. Magn. Reson.
,
18
(
1
), p.
51
.10.1186/s12968-016-0269-7
25.
Felippa
,
C.
,
2004
,
Introduction to Finite Element Methods.
Vol.
1
,
University of Colorado
, Boulder, CO, p.
791
.
26.
Kleitman
,
D.
,
2005
,
18.013A Calculus With Applications
,
Massachusetts Institute of Technology, MIT OpenCourseWare
, Cambridge, MA.
27.
Fp Beer
,
E. J.
,
Jt DeWolf
,
J. T.
, and
Mazurek
,
D. F.
,
2015
,
Mechanics of Materials
,
McGraw-Hill
, New York, p.
897
.
28.
Tokodi
,
M.
,
Staub
,
L.
,
Budai
,
Á.
,
Lakatos
,
B. K.
,
Csákvári
,
M.
,
Suhai
,
F. I.
,
Szabó
,
L.
, et al.,
2021
, “
Partitioning the Right Ventricle Into 15 Segments and Decomposing Its Motion Using 3D Echocardiography-Based Models: The Updated ReVISION Method
,”
Front. Cardiovasc. Med.
,
8
, p.
622118
.10.3389/fcvm.2021.622118
29.
Bland
,
J. M.
, and
Altman
,
D. G.
,
1986
, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Lancet
,
1
(
8476
), pp.
307
310
.10.1016/S0140-6736(86)90837-8
30.
Pedrizzetti
,
G.
,
Sengupta
,
S.
,
Caracciolo
,
G.
,
Park
,
C. S.
,
Amaki
,
M.
,
Goliasch
,
G.
,
Narula
,
J.
, and
Sengupta
,
P. P.
,
2014
, “
Three-Dimensional Principal Strain Analysis for Characterizing Subclinical Changes in Left Ventricular Function.
,”
J. Am. Soc. Echocardiogr.
,
27
(
10
), pp.
1041
1050 e1
.10.1016/j.echo.2014.05.014
31.
Ahn
,
H.-S.
,
Kim
,
Y.-K.
,
Song
,
H. C.
,
Choi
,
E. J.
,
Kim
,
G.-H.
,
Cho
,
J. S.
,
Ihm
,
S.-H.
, et al.,
2017
, “
The Impact of Preload on 3-Dimensional Deformation Parameters: Principal Strain, Twist and Torsion
,”
Cardiovasc. Ultrasound
,
15
(
1
), p.
22
.10.1186/s12947-017-0111-x
32.
Satriano
,
A.
,
Heydari
,
B.
,
Narous
,
M.
,
Exner
,
D. V.
,
Mikami
,
Y.
,
Attwood
,
M. M.
,
Tyberg
,
J. V.
, et al.,
2017
, “
Clinical Feasibility and Validation of 3D Principal Strain Analysis From Cine MRI: Comparison to 2D Strain by MRI and 3D Speckle Tracking Echocardiography
,”
Int. J. Cardiovasc. Imaging
,
33
(
12
), pp.
1979
1992
.10.1007/s10554-017-1199-7
33.
Ghelani
,
S. J.
,
Brown
,
D. W.
,
Kuebler
,
J. D.
,
Perrin
,
D.
,
Shakti
,
D.
,
Williams
,
D. N.
,
Marx
,
G. R.
, et al.,
2018
, “
Left Atrial Volumes and Strain in Healthy Children Measured by Three-Dimensional Echocardiography: Normal Values and Maturational Changes
,”
J. Am. Soc. Echocardiogr.
,
31
(
2
), pp.
187
193 e1
.10.1016/j.echo.2017.10.011
34.
Satriano
,
A.
,
Pournazari
,
P.
,
Hirani
,
N.
,
Helmersen
,
D.
,
Thakrar
,
M.
,
Weatherald
,
J.
,
White
,
J. A.
, and
Fine
,
N. M.
,
2019
, “
Characterization of Right Ventricular Deformation in Pulmonary Arterial Hypertension Using Three-Dimensional Principal Strain Analysis
,”
J. Am. Soc. Echocardiogr.
,
32
(
3
), pp.
385
393
.10.1016/j.echo.2018.10.001
35.
Sanchez-Quintana
,
D.
,
Anderson
,
R. H.
, and
Ho
,
S. Y.
,
1996
, “
Ventricular Myoarchitecture in Tetralogy of Fallot
,”
Heart
,
76
(
3
), pp.
280
286
.10.1136/hrt.76.3.280
36.
Warnes
,
C. A.
,
2009
, “
American Heart Association
,”
Adult Congenital Heart Disease. The AHA Clinical Series
, Vol.
xiii
,
Wiley-Blackwell
,
Chichester, UK; Hoboken, NJ
, p.
274
.
37.
Erley
,
J.
,
Tanacli
,
R.
,
Genovese
,
D.
,
Tapaskar
,
N.
,
Rashedi
,
N.
,
Bucius
,
P.
,
Kawaji
,
K.
, et al.,
2020
, “
Myocardial Strain Analysis of the Right Ventricle: Comparison of Different Cardiovascular Magnetic Resonance and Echocardiographic Techniques
,”
J. Cardiovasc. Magn. Reson.
,
22
(
1
), p.
51
.10.1186/s12968-020-00647-7
38.
Catalano
,
O.
,
Moro
,
G.
,
Cannizzaro
,
G.
,
Mingrone
,
R.
,
Opasich
,
C.
,
Perotti
,
M.
,
Rognone
,
F.
, et al.,
2005
, “
Scar Detection by Contrast-Enhanced Magnetic Resonance Imaging in Chronic Coronary Artery Disease: A Comparison With Nuclear Imaging and Echocardiography
,”
J. Cardiovasc. Magn. Reson.
,
7
(
4
), pp.
639
647
.10.1081/JCMR-200065602
You do not currently have access to this content.