Abstract
This paper describes the design of a simple and low-cost compliant low-profile prosthetic foot based on a cantilevered beam of uniform strength. The prosthetic foot is developed such that the maximum stress experienced by the beam is distributed approximately evenly across the length of the beam. Due to this stress distribution, the prosthetic foot exhibits compliant behavior not achievable through standard design approaches (e.g., designs based on simple cantilevered beams). Additionally, due to its simplicity and use of flat structural members, the foot can be manufactured at low cost. An analytical model of the compliant behavior of the beam is developed that facilitates rapid design changes to vary foot size and stiffness. A characteristic prototype was designed and constructed to be used in both a benchtop quasi-static loading test as well as a dynamic walking test for validation. The model predicted the rotational stiffness of the prototype with 5% error. Furthermore, the prototype foot was tested alongside two commercially available prosthetic feet (a low profile foot and an energy storage and release foot) in level walking experiments with a single study participant. The prototype foot displayed the lowest stiffness of the three feet (6.0, 7.1, and 10.4 Nm/deg for the prototype foot, the commercial low profile foot, and the energy storage and release foot, respectively). This foot design approach and accompanying model may allow for compliant feet to be developed for individuals with long residual limbs.