Abstract

Acoustic droplet vaporization (ADV) has been proven to enhance high intensity focused ultrasound (HIFU) thermal ablation of tumor. It has also been demonstrated that triggering droplets before HIFU exposure could be a potential way to control both the size and the shape of the thermal lesion. In this paper, a numerical model is proposed to predict the thermal lesion created in ADV enhanced HIFU treatment. Bubble oscillation was coupled into a viscoelastic medium in the model to more closely represent real applications in tissues. Several physical processes caused by continuous wave ultrasound and elevated temperature during the HIFU exposure were considered, including rectified diffusion, gas solubility variation with temperature in the medium, and boiling. Four droplet concentrations spanning two orders of magnitude were calculated. The bubble cloud formed from triggering of the droplets by the pulse wave ultrasound, along with the evolution of the shape and location of the bubble cloud and thermal lesion during the following continuous wave exposure was obtained. The increase of bubble void fraction caused by continuous wave exposure was found to be consistent with the experimental observation. With the increase of droplet concentration, the predicted bubble cloud shapes vary from tadpole to triangular and double triangular, while the thermal lesions move toward the transducer. The results show that the assumptions used in this model increased the accuracy of the results. This model may be used for parametrical study of ADV enhanced HIFU treatment and be further used for treatment planning and optimization in the future.

References

1.
Kennedy
,
J.
,
ter Haar
,
G.
, and
Cranston
,
D.
,
2003
, “
High Intensity Focused Ultrasound: Surgery of the Future?
Br. J. Radiol.
,
76
(
909
), pp.
590
599
.10.1259/bjr/17150274
2.
Takegami
,
K.
,
Kaneko
,
Y.
,
Watanabe
,
T.
,
Watanabe
,
S.
,
Maruyama
,
T.
,
Matsumoto
,
Y.
, and
Nagawa
,
H.
,
2005
, “
Heating and Coagulation Volume Obtained With High-Intensity Focused Ultrasound Therapy: Comparison of Perflutren Protein-Type a Microspheres and MRX-133 in Rabbits 1
,”
Radiology
,
237
(
1
), pp.
132
136
.10.1148/radiol.2371041430
3.
Umemura
,
S.-I.
,
Kawabata
,
K.-I.
, and
Sasaki
,
K.
,
2005
, “
In Vivo Acceleration of Ultrasonic Tissue Heating by Microbubble Agent
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
10
), pp.
1690
1698
.10.1109/TUFFC.2005.1561623
4.
Tung
,
Y.-S.
,
Liu
,
H.-L.
,
Wu
,
C.-C.
,
Ju
,
K.-C.
,
Chen
,
W.-S.
, and
Lin
,
W.-L.
,
2006
, “
Contrast-Agent-Enhanced Ultrasound Thermal Ablation
,”
Ultrasound Med. Biol.
,
32
(
7
), pp.
1103
1110
.10.1016/j.ultrasmedbio.2006.04.005
5.
Luo
,
W.
,
Zhou
,
X.
,
Ren
,
X.
,
Zheng
,
M.
,
Zhang
,
J.
, and
He
,
G.
,
2007
, “
Enhancing Effects of SonoVue, a Microbubble Sonographic Contrast Agent, on High-Intensity Focused Ultrasound Ablation in Rabbit Livers In Vivo
,”
J. Ultrasound Med.
,
26
(
4
), pp.
469
476
.10.7863/jum.2007.26.4.469
6.
Coussios
,
C.
,
Farny
,
C.
,
Ter Haar
,
G.
, and
Roy
,
R.
,
2007
, “
Role of Acoustic Cavitation in the Delivery and Monitoring of Cancer Treatment by High-Intensity Focused Ultrasound (HIFU)
,”
Int. J. Hyperth.
,
23
(
2
), pp.
105
120
.10.1080/02656730701194131
7.
Luo
,
W.
,
Zhou
,
X.
,
He
,
G.
,
Li
,
Q.
,
Zheng
,
X.
,
Fan
,
Z.
,
Liu
,
Q.
,
Yu
,
M.
,
Han
,
Z.
,
Zhang
,
J.
, and
Qian
,
Y.
,
2008
, “
Ablation of High Intensity Focused Ultrasound Combined With SonoVue on Rabbit VX2 Liver Tumors: Assessment With Conventional Gray-Scale US, Conventional Color/Power Doppler US, Contrast-Enhanced Color Doppler US, and Contrast-Enhanced Pulse-Inversion Harmonic US
,”
Ann. Surg. Oncol.
,
15
(
10
), pp.
2943
2953
.10.1245/s10434-008-0032-x
8.
Kripfgans
,
O. D.
,
Fowlkes
,
J. B.
,
Miller
,
D. L.
,
Eldevik
,
O. P.
, and
Carson
,
P. L.
,
2000
, “
Acoustic Droplet Vaporization for Therapeutic and Diagnostic Applications
,”
Ultrasound Med. Biol.
,
26
(
7
), pp.
1177
1189
.10.1016/S0301-5629(00)00262-3
9.
Zhang
,
M.
,
Fabiilli
,
M. L.
,
Haworth
,
K. J.
,
Padilla
,
F.
,
Swanson
,
S. D.
,
Kripfgans
,
O. D.
,
Carson
,
P. L.
, and
Fowlkes
,
J. B.
,
2011
, “
Acoustic Droplet Vaporization for Enhancement of Thermal Ablation by High Intensity Focused Ultrasound
,”
Acad. Radiol.
,
18
(
9
), pp.
1123
1132
.10.1016/j.acra.2011.04.012
10.
Zhu
,
M.
,
Jiang
,
L.
,
Fabiilli
,
M. L.
,
Zhang
,
A.
,
Fowlkes
,
J. B.
, and
Xu
,
L. X.
,
2013
, “
Treatment of Murine Tumors Using Acoustic Droplet Vaporization-Enhanced High Intensity Focused Ultrasound
,”
Phys. Med. Biol.
,
58
(
17
), pp.
6179
6191
.10.1088/0031-9155/58/17/6179
11.
Zhang
,
P.
,
Kopechek
,
J. A.
, and
Porter
,
T. M.
,
2013
, “
The Impact of Vaporized Nanoemulsions on Ultrasound-Mediated Ablation
,”
J. Ther. Ultrasound
,
1
(
1
), p.
2
.10.1186/2050-5736-1-2
12.
Phillips
,
L. C.
,
Puett
,
C.
,
Sheeran
,
P. S.
,
Dayton
,
P. A.
,
Miller
,
G. W.
, and
Matsunaga
,
T. O.
,
2013
, “
Phase-Shift Perfluorocarbon Agents Enhance High Intensity Focused Ultrasound Thermal Delivery With Reduced Near-Field Heating
,”
J. Acoust. Soc. Am.
,
134
(
2
), pp.
1473
1482
.10.1121/1.4812866
13.
Moyer
,
L. C.
,
Timbie
,
K. F.
,
Sheeran
,
P. S.
,
Price
,
R. J.
,
Miller
,
G. W.
, and
Dayton
,
P. A.
,
2015
, “
High-Intensity Focused Ultrasound Ablation Enhancement In Vivo Via Phase-Shift Nanodroplets Compared to Microbubbles
,”
J. Ther. Ultrasound
,
3
(
1
), p.
2
.10.1186/s40349-015-0029-4
14.
Xin
,
Y.
,
Zhang
,
A.
,
Xu
,
L. X.
, and
Fowlkes
,
J. B.
,
2018
, “
The Effects on Thermal Lesion Shape and Size From Bubble Clouds Produced by Acoustic Droplet Vaporization
,”
Biomed. Eng. Online
,
17
(
1
), p.
163
.10.1186/s12938-018-0596-z
15.
Okita
,
K.
,
Sugiyama
,
K.
,
Ono
,
K.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2011
, “
Numerical Study of the Effective Combination of Microbubbles and Ultrasound in HIFU Therapy
,” 10th International Symposium on Therapeutic Ultrasound (
ISTU 2010
), AIP Conf. Proc. 1359, Tokyo, Japan, June 9–12, pp. 437–442.10.1063/1.3607946
16.
Holt
,
R. G.
,
Roy
,
R. A.
,
Thomas
,
C. R.
,
Farny
,
C.
,
Wu
,
T.
,
Yang
,
X.
, and
Edson
,
P.
,
2006
, “
Therapeutic Bubbles: Basic Principles of Cavitation in Therapeutic Ultrasound
,”
Fifth International Symposium on Therapeutic Ultrasound
, AIP Conf. Proc. 829, Boston, MA, pp. 13–17.10.1063/1.2205429
17.
Wu
,
T.
,
Roy
,
R. A.
, and
Holt
,
R. G.
,
2006
, “
Thermal Lesion Development in Bubble‐Mediated HIFU: Modeling
,”
5th International Symposium on Therapeutic Ultrasound
, AIP Conf. Proc. 829, Boston, MA, pp. 333–337.10.1063/1.2205492
18.
Chavrier
,
F.
,
Chapelon
,
J.
,
Gelet
,
A.
, and
Cathignol
,
D.
,
2000
, “
Modeling of High-Intensity Focused Ultrasound-Induced Lesions in the Presence of Cavitation Bubbles
,”
J. Acoust. Soc. Am.
,
108
(
1
), pp.
432
440
.10.1121/1.429476
19.
Curiel
,
L.
,
Chavrier
,
F.
,
Gignoux
,
B.
,
Pichardo
,
S.
,
Chesnais
,
S.
, and
Chapelon
,
J.
,
2004
, “
Experimental Evaluation of Lesion Prediction Modelling in the Presence of Cavitation Bubbles: Intended for High-Intensity Focused Ultrasound Prostate Treatment
,”
Med. Biol. Eng. Comput.
,
42
(
1
), pp.
44
54
.10.1007/BF02351010
20.
Moriyama
,
T.
,
Yoshizawa
,
S.
, and
Umemura
,
S.-I.
,
2012
, “
Thermal Simulation of Cavitation-Enhanced Ultrasonic Heating Verified With Tissue-Mimicking Gel
,”
Jpn. J. Appl. Phys.
,
51
(
7S
), p.
07GF27
.10.7567/JJAP.51.07GF27
21.
Asai
,
A.
,
Okano
,
H.
,
Yoshizawa
,
S.
, and
Umemura
,
S.-I.
,
2013
, “
Analysis of Temperature Rise Induced by High-Intensity Focused Ultrasound in Tissue-Mimicking Gel Considering Cavitation Bubbles
,”
Jpn. J. Appl. Phys.
,
52
(
7S
), p.
07HF02
.10.7567/JJAP.52.07HF02
22.
Huang
,
C.
,
Sun
,
M.
,
Chen
,
B.
,
Shieh
,
J.
,
Chen
,
C.
, and
Chen
,
W.
,
2015
, “
Simulation of Thermal Ablation by High-Intensity Focused Ultrasound With Temperature-Dependent Properties
,”
Ultrason. Sonochem.
,
27
, pp.
456
465
.10.1016/j.ultsonch.2015.06.003
23.
Meaney
,
P. M.
,
Cahill
,
M. D.
, and
ter Haar
,
G. R.
,
2000
, “
The Intensity Dependence of Lesion Position Shift During Focused Ultrasound Surgery
,”
Ultrasound Med. Biol.
,
26
(
3
), pp.
441
450
.10.1016/S0301-5629(99)00161-1
24.
Okita
,
K.
,
Sugiyama
,
K.
,
Takagi
,
S.
, and
Matsumto
,
Y.
,
2013
, “
Microbubble Behavior in an Ultrasound Field for High Intensity Focused Ultrasound Therapy Enhancement
,”
J. Acoust. Soc. Am.
,
134
(
2
), pp.
1576
1585
.10.1121/1.4812880
25.
Jensen
,
C.
,
Cleveland
,
R.
, and
Coussios
,
C.
,
2013
, “
Real-Time Temperature Estimation and Monitoring of HIFU Ablation Through a Combined Modeling and Passive Acoustic Mapping Approach
,”
Phys. Med. Biol.
,
58
(
17
), pp.
5833
5850
.10.1088/0031-9155/58/17/5833
26.
Grisey
,
A.
,
Yon
,
S.
,
Letort
,
V.
, and
Lafitte
,
P.
,
2016
, “
Simulation of High-Intensity Focused Ultrasound Lesions in Presence of Boiling
,”
J. Therap. Ultrasound
,
4
(
1
), p.
11
.10.1186/s40349-016-0056-9
27.
Hsieh
,
D. Y.
, and
Plesset
,
M. S.
,
1961
, “
Theory of Rectified Diffusion of Mass Into Gas Bubbles
,”
J. Acoust. Soc. Am.
,
33
(
2
), pp.
206
215
.10.1121/1.1908621
28.
Crum
,
L.
, and
Hansen
,
G.
,
1982
, “
Growth of Air Bubbles in Tissue by Rectified Diffusion
,”
Phys. Med. Biol.
,
27
(
3
), pp.
413
417
.10.1088/0031-9155/27/3/008
29.
Khokhlova
,
V. A.
,
Bailey
,
M. R.
,
Reed
,
J. A.
,
Cunitz
,
B. W.
,
Kaczkowski
,
P. J.
, and
Crum
,
L. A.
,
2006
, “
Effects of Nonlinear Propagation, Cavitation, and Boiling in Lesion Formation by High Intensity Focused Ultrasound in a Gel Phantom
,”
J. Acoust. Soc. Am.
,
119
(
3
), pp.
1834
1848
.10.1121/1.2161440
30.
Chen
,
H.
,
Li
,
X.
, and
Wan
,
M.
,
2006
, “
Spatial–Temporal Dynamics of Cavitation Bubble Clouds in 1.2 MHz Focused Ultrasound Field
,”
Ultrason. Sonochem.
,
13
(
6
), pp.
480
486
.10.1016/j.ultsonch.2006.01.004
31.
Xin
,
Y.
,
Zhang
,
A.
,
Xu
,
L. X.
, and
Fowlkes
,
J. B.
,
2017
, “
Numerical Study of Bubble Area Evolution During Acoustic Droplet Vaporization-Enhanced HIFU Treatment
,”
ASME J. Biomech. Eng.
,
139
(
9
), p.
091004
.10.1115/1.4037150
32.
Yang
,
X.
, and
Church
,
C. C.
,
2005
, “
A Model for the Dynamics of Gas Bubbles in Soft Tissue
,”
J. Acoust. Soc. Am.
,
118
(
6
), pp.
3595
3606
.10.1121/1.2118307
33.
Keller
,
J. B.
, and
Miksis
,
M.
,
1980
, “
Bubble Oscillations of Large Amplitude
,”
J. Acoust. Soc. Am.
,
68
(
2
), pp.
628
633
.10.1121/1.384720
34.
Commander
,
K. W.
, and
Prosperetti
,
A.
,
1989
, “
Linear Pressure Waves in Bubbly Liquids: Comparison Between Theory and Experiments
,”
J. Acoust. Soc. Am.
,
85
(
2
), pp.
732
746
.10.1121/1.397599
35.
Takegami
,
K.
,
Kaneko
,
Y.
,
Watanabe
,
T.
,
Maruyama
,
T.
,
Matsumoto
,
Y.
, and
Nagawa
,
H.
,
2004
, “
Polyacrylamide Gel Containing Egg White as New Model for Irradiation Experiments Using Focused Ultrasound
,”
Ultrasound Med. Biol.
,
30
(
10
), pp.
1419
1422
.10.1016/j.ultrasmedbio.2004.07.016
36.
Cui
,
S. T.
,
Siepmann
,
J. I.
,
Cochran
,
H. D.
, and
Cummings
,
P. T.
,
1998
, “
Intermolecular Potentials and Vapor–Liquid Phase Equilibria of Perfluorinated Alkanes
,”
Fluid Ph. Equilib.
,
146
(
1–2
), pp.
51
61
.10.1016/S0378-3812(98)00216-7
37.
Kandadai
,
M. A.
,
Mohan
,
P.
,
Lin
,
G.
,
Butterfield
,
A.
,
Skliar
,
M.
, and
Magda
,
J. J.
,
2010
, “
Comparison of Surfactants Used to Prepare Aqueous Perfluoropentane Emulsions for Pharmaceutical Applications
,”
Langmuir
,
26
(
7
), pp.
4655
4660
.10.1021/la100307r
38.
Choi
,
M. J.
,
Guntur
,
S. R.
,
Lee
,
K. I.
,
Paeng
,
D. G.
, and
Coleman
,
A.
,
2013
, “
A Tissue Mimicking Polyacrylamide Hydrogel Phantom for Visualizing Thermal Lesions Generated by High Intensity Focused Ultrasound
,”
Ultrasound Med. Biol.
,
39
(
3
), pp.
439
448
.10.1016/j.ultrasmedbio.2012.10.002
39.
Lafon
,
C.
,
Zderic
,
V.
,
Noble
,
M. L.
,
Yuen
,
J. C.
,
Kaczkowski
,
P. J.
,
Sapozhnikov
,
O. A.
,
Chavrier
,
F.
,
Crum
,
L. A.
, and
Vaezy
,
S.
,
2005
, “
Gel Phantom for Use in High-Intensity Focused Ultrasound Dosimetry
,”
Ultrasound Med. Biol.
,
31
(
10
), pp.
1383
1389
.10.1016/j.ultrasmedbio.2005.06.004
40.
Divkovic
,
G. W.
,
Liebler
,
M.
,
Braun
,
K.
,
Dreyer
,
T.
,
Huber
,
P. E.
, and
Jenne
,
J. W.
,
2007
, “
Thermal Properties and Changes of Acoustic Parameters in an Egg White Phantom During Heating and Coagulation by High Intensity Focused Ultrasound
,”
Ultrasound Med. Biol.
,
33
(
6
), pp.
981
986
.10.1016/j.ultrasmedbio.2006.11.021
41.
Gao
,
J.
,
You
,
J.
,
Huang
,
Z.
,
Cochran
,
S.
, and
Corner
,
G.
,
2012
, “
Simultaneous Measurement of Thermophysical Properties of Tissue-Mimicking Phantoms for High Intensity Focused Ultrasound (HIFU) Exposures
,”
Int. J. Thermophys.
,
33
(
3
), pp.
495
504
.10.1007/s10765-012-1158-4
42.
Coimbra
,
J. S.
,
Gabas
,
A. L.
,
Minim
,
L. A.
,
Rojas
,
E. E. G.
,
Telis
,
V. R.
, and
Telis-Romero
,
J.
,
2006
, “
Density, Heat Capacity and Thermal Conductivity of Liquid Egg Products
,”
J. Food Eng.
,
74
(
2
), pp.
186
190
.10.1016/j.jfoodeng.2005.01.043
43.
Donovan
,
J. W.
,
Mapes
,
C. J.
,
Davis
,
J. G.
, and
Garibaldi
,
J. A.
,
1975
, “
A Differential Scanning Calorimetric Study of the Stability of Egg White to Heat Denaturation
,”
J. Sci. Food Agric.
,
26
(
1
), pp.
73
83
.10.1002/jsfa.2740260109
44.
Rumble
,
J. R.
,
2019
,
CRC Handbook of Chemistry and Physics
, 100th ed.,
CRC Press
, Boca Raton, FL.
45.
Bond
,
L. J.
,
Chiang
,
C. H.
, and
Fortunko
,
C. M.
,
1992
, “
Absorption of Ultrasonic Waves in Air at High Frequencies (10–20 MHz)
,”
J. Acoust. Soc. Am.
,
92
(
4
), pp.
2006
2015
.10.1121/1.405251
46.
Epstein
,
P. S.
, and
Plesset
,
M. S.
,
1950
, “
On the Stability of Gas Bubbles in Liquid–Gas Solutions
,”
J. Chem. Phys.
,
18
(
11
), pp.
1505
1509
.10.1063/1.1747520
47.
Sarkar
,
K.
,
Katiyar
,
A.
, and
Jain
,
P.
,
2009
, “
Growth and Dissolution of an Encapsulated Contrast Microbubble: Effects of Encapsulation Permeability
,”
Ultrasound Med. Biol.
,
35
(
8
), pp.
1385
1396
.10.1016/j.ultrasmedbio.2009.04.010
48.
Eller
,
A.
, and
Flynn
,
H.
,
1965
, “
Rectified Diffusion During Nonlinear Pulsations of Cavitation Bubbles
,”
J. Acoust. Soc. Am.
,
37
(
3
), pp.
493
503
.10.1121/1.1909357
49.
Engineering ToolBox, 2004, “
Air Solubility in Water
,” Engineering ToolBox, accessed Sept. 28, 2021, https://www.engineeringtoolbox.com/air-solubility-water-d_639.html
50.
Samuel
,
S.
,
Duprey
,
A.
,
Fabiilli
,
M. L.
,
Bull
,
J. L.
, and
Brian Fowlkes
,
J.
,
2012
, “
In Vivo Microscopy of Targeted Vessel Occlusion Employing Acoustic Droplet Vaporization
,”
Microcirculation
,
19
(
6
), pp.
501
509
.10.1111/j.1549-8719.2012.00176.x
51.
Harmon
,
J. S.
,
Kabinejadian
,
F.
,
Seda
,
R.
,
Fabiilli
,
M. L.
,
Kuruvilla
,
S.
,
Kuo
,
C. C.
,
Greve
,
J. M.
,
Fowlkes
,
J. B.
, and
Bull
,
J. L.
,
2019
, “
Minimally Invasive Gas Embolization Using Acoustic Droplet Vaporization in a Rodent Model of Hepatocellular Carcinoma
,”
Sci. Rep.
,
9
(
1
), pp.
1
11
.10.1038/s41598-019-47309-y
52.
Zhang
,
M.
,
Fabiilli
,
M. L.
,
Haworth
,
K. J.
,
Fowlkes
,
J. B.
,
Kripfgans
,
O. D.
,
Roberts
,
W.
,
Ives
,
K.
, and
Carson
,
P. L.
,
2010
, “
Initial Investigation of Acoustic Droplet Vaporization for Occlusion in Canine Kidney
,”
Ultrasound Med. Biol.
,
36
(
10
), pp.
1691
1703
.10.1016/j.ultrasmedbio.2010.06.020
You do not currently have access to this content.