Abstract

The threshold for surgical stabilization for an open-book pelvic fracture is not well defined. The purpose of this research was to validate the biomechanical behavior of a specimen-specific pelvic finite element (FE) model with an open-book fracture with the biomechanical behavior of a cadaveric pelvis in double leg stance configuration under physiologic loading, and to utilize the validated model to compare open book versus intact strain patterns during gait. A cadaveric pelvis was experimentally tested under compressive loading in double leg stance, intact, and with a simulated open-book fracture. An intact FE model of this specimen was reanalyzed with an equivalent simulated open-book fracture. Comparison of the FE generated and experimentally measured strains yielded an R2 value of 0.92 for the open-book fracture configuration. Strain patterns in the intact and fractured models were compared throughout the gait cycle. In double leg stance and heel-strike/heel-off models, tensile strains decreased, especially in the pubic ramus contralateral to the injury, and compressive strains increased in the sacroiliac region of the injured side. In the midstance/midswing gait configuration, higher tensile and compressive FE strains were observed on the midstance side of the fractured versus intact model and decreased along the superior and inferior pubic rami and ischium, with midswing side strains reduced almost to zero in the fractured model. Identified in silico patterns align with clinical understanding of open-book fracture pathology suggesting future potential of FE models to quantify instability and optimize fixation strategies.

References

1.
Gerecht
,
R.
,
2014
, “
Critical Management of Deadly Pelvic Injuries
,”
J. Emer. Med. Serv.
, 39(
12
), pp.
28
35
.https://pubmed.ncbi.nlm.nih.gov/25630178/
2.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
,
2005
, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
364
373
.10.1115/1.1894148
3.
Barker
,
D. S.
,
Netherway
,
D. J.
,
Krishnan
,
J.
, and
Hearn
,
T. C.
,
2005
, “
Validation of a Finite Element Model of the Human Metacarpal
,”
Med. Eng. Phys.
,
27
(
2
), pp.
103
113
.10.1016/j.medengphy.2004.10.001
4.
Dalstra
,
M.
,
Huiskes
,
R.
, and
van Erning
,
L.
,
1995
, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
272
178
.10.1115/1.2794181
5.
Dawson
,
J. M.
,
Khmelniker
,
B. V.
, and
McAndrew
,
M. P.
,
1999
, “
Analysis of the Structural Behavior of the Pelvis During Lateral Impact Using the Finite Element Method
,”
Acc. Anal. Prev.
,
31
(
1–2
), pp.
109
119
.10.1016/S0001-4575(98)00052-9
6.
Garcı’A
,
J. M.
,
Doblaré
,
M.
,
Seral
,
B.
,
Seral
,
F.
,
Palanca
,
D.
, and
Gracia
,
L.
,
2000
, “
Three-Dimensional Finite Element Analysis of Several Internal and External Pelvis Fixations
,”
ASME J. Biomech. Eng.
,
122
(
5
), pp.
516
522
.10.1115/1.1289995
7.
Goel
,
V. K.
, and
Svensson
,
N. L.
,
1977
, “
Forces on the Pelvis
,”
J. Biomech.
,
10
(
3
), pp.
195
200
.10.1016/0021-9290(77)90058-6
8.
Goel
,
V. K.
,
Valliappan
,
S.
, and
Svensson
,
N. L.
,
1978
, “
Stresses in the Normal Pelvis
,”
Comput. Biol. Med.
,
8
(
2
), pp.
91
104
.10.1016/0010-4825(78)90001-X
9.
Gupta
,
S.
,
van der Helm
,
F. C. T.
,
Sterk
,
J. C.
,
van Keulen
,
F.
, and
Kaptein
,
B. L.
,
2004
, “
Development and Experimental Validation of a Three-Dimensional Finite Element Model of the Human Scapula
,”
Proc. Inst. Mech. Eng., Part H
,
218
(
2
), pp.
127
142
.10.1243/095441104322984022
10.
Kaku
,
N.
,
Tsumura
,
H.
,
Taira
,
H.
,
Sawatari
,
T.
, and
Torisu
,
T.
,
2004
, “
Biomechanical Study of Load Transfer of the Pubic Ramus Due to Pelvic Inclination After Hip Joint Surgery Using a Three-Dimensional Finite Element Model
,”
J. Orthop. Sci.
,
9
(
3
), pp.
264
269
.10.1007/s00776-004-0772-9
11.
Leung
,
A. S. O.
,
Gordon
,
L. M.
,
Skrinskas
,
T.
,
Szwedowski
,
T.
, and
Whyne
,
C. M.
,
2009
, “
Effects of Bone Density Alterations on Strain Patterns in the Pelvis: Application of a Finite Element Model
,”
J. Eng. Med.
,
223
(
8
), pp.
965
979
.10.1243/09544119JEIM618
12.
Li
,
Z.
,
Butala
,
N. B.
,
Etheridge
,
B. S.
,
Siegel
,
H. J.
,
Lemons
,
J. E.
, and
Eberhardt
,
A. W.
,
2007
, “
A Biomechanical Study of Periacetabular Defects and Cement Filling
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
129
136
.10.1115/1.2472367
13.
Maurel
,
N.
,
Diop
,
A.
, and
Grimberg
,
J.
,
2005
, “
A 3D Finite Element Model of an Implanted Scapula: Importance of a Multiparametric Validation Using Experimental Data
,”
J. Biomech.
,
38
(
9
), pp.
1865
1872
.10.1016/j.jbiomech.2004.08.019
14.
Shim
,
V. B.
,
Pitto
,
R. P.
,
Streicher
,
R.
,
Hunter
,
P. J.
, and
Anderson
,
I. A.
,
2007
, “
The Use of Sparse CT Datasets for Auto-Generating Accurate FE Models of the Femur and Pelvis
,”
J. Biomech.
,
40
(
1
), pp.
26
35
.10.1016/j.jbiomech.2005.11.018
15.
Shim
,
V. B.
,
Pitto
,
R. P.
,
Streicher
,
R.
,
Hunter
,
P. J.
, and
Anderson
,
I. A.
,
2008
, “
Development and Validation of Patient-Specific Finite Element Models of the Hemipelvis Generated From a Sparse CT Dataset
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051010
.10.1115/1.2960368
16.
Thompson
,
M. S.
,
Northmore-Ball
,
M. D.
, and
Tanner
,
K. E.
,
2002
, “
Effects of Acetabular Resurfacing Component Material and Fixation on the Strain Distribution in the Pelvis
,”
Proc. Inst. Mech. Eng., Part H
,
216
(
4
), pp.
237
245
.10.1243/09544110260138727
17.
Neal
,
M. L.
, and
Kerckhoffs
,
R.
,
2010
, “
Current Progress in Patient-Specific Modeling
,”
Brief. Bioinform.
,
11
(
1
), pp.
111
126
.10.1093/bib/bbp049
18.
Barratt
,
D. C.
,
Chan
,
C. S.
,
Edwards
,
P. J.
,
Penney
,
G. P.
,
Slomczykowski
,
M.
,
Carter
,
T. J.
, and
Hawkes
,
D. J.
,
2008
, “
Instantiation and Registration of Statistical Shape Models of the Femur and Pelvis Using 3D Ultrasound Imaging
,”
Med. Image Anal.
,
12
(
3
), pp.
358
374
.10.1016/j.media.2007.12.006
19.
Hipp
,
J. A.
,
Mcbroom
,
R. J.
,
Cheal
,
E. J.
, and
Hayes
,
W. C.
,
1989
, “
Structural Consequences of Endosteal Metastatic Lesions in Long Bones
,”
J. Orthop. Res.,
7
(
6
), pp.
828
837
.10.1002/jor.1100070609
20.
Salo
,
Z.
,
Beek
,
M.
, and
Whyne
,
C. M.
,
2012
, “
Evaluation of Mesh Morphing and Mapping Techniques in Patient Specific Modeling of the Human Pelvis
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
8
), pp.
904
913
.10.1002/cnm.2468
21.
Salo
,
Z.
,
Beek
,
M.
,
Wright
,
D.
,
Maloul
,
A.
, and
Whyne
,
C. M.
,
2017
, “
Analysis of Pelvic Strain in Different Gait Configurations in a Validated Cohort of Computed Tomography Based Finite Element Models
,”
J. Biomech.
,
64
, pp.
120
130
.10.1016/j.jbiomech.2017.09.014
22.
Ravera
,
E. P.
,
Crespo
,
M. J.
,
Guarnieri
,
F. A.
, and
Braidot
,
A. A.
, 2015, “
Combined Finite Element and Musculoskeletal Models for Analysis of Pelvis Throughout the Gait Cycle,”
1st Pan-American Congress on Computational Mechanics – PANACM 2015
, XI Argentine Congress on Computational Mechanics – MECOM 2015, Buenos Aires, Argentina, Apr. 27–29. https://www.researchgate.net/publication/275830165_Combined_Finite_Element_and_Musculoskeletal_Models_for_Analysis_of_Pelvis_Throughout_the_Gait_Cycle
23.
Ravera
,
E. P.
,
Crespo
,
M. J.
,
Guarnieri
,
F. A.
, and
Braidot
,
A. A.
, 2014, “
Stress in Human Pelvis Throughout the Gait Cycle: Development, Evaluation and Sensitivity Studies of a Finite Element Model,”
VI Latin American Congress on Biomedical Engineering CLAIB 2014
, Parana, Argentina, Oct. 29–31, pp. 246–249.10.1007/978-3-319-13117-7_64
24.
Ghosh
,
R.
,
Pal
,
B.
,
Ghosh
,
D.
, and
Gupta
,
S.
,
2015
, “
Finite Element Analysis of a Hemi-Pelvis: The Effect of Inclusion of Cartilage Layer on Acetabular Stresses and Strain
,”
Computer Comput. Methods Biomech. Biomed. Engin.,
18
(
7
), pp.
697
710
.10.1080/10255842.2013.843674
25.
Zhou
,
Y.
,
Min
,
L.
,
Liu
,
Y.
,
Shi
,
R.
,
Zhang
,
W.
,
Zhang
,
H.
,
Duan
,
H.
, and
Tu
,
C.
,
2013
, “
Finite Element Analysis of the Pelvis after Modular Hemipelvic Endoprosthesis Reconstruction
,” Int. Orthop.,
37
(
4
), pp.
653
658
.10.1007/s00264-012-1756-6
26.
Majumder
,
S.
,
Roychowdhury
,
A.
, and
Pal
,
S.
,
2004
, “
Variations of Stress in Pelvic Bone During Normal Walking, Considering All Active Muscles
,”
Trends Biomater. Artif. Organs
,
17
(
2
), pp.
48
53
.https://www.researchgate.net/publication/268411424_Variations_of_stress_in_pelvic_bone_during_normal_walking_considering_all_active_muscles
27.
Bohme
,
J.
,
Shim
,
V.
,
Hoch
,
A.
,
Mutze
,
M.
,
Muller
,
C.
, and
Josten
,
C.
,
2012
, “
Clinical Implementation of Finite Element Models in Pelvic Ring Surgery for Prediction of Implant Behaviour: A Case Report
,”
Clin. Biomech.
,
27
(
9
), pp.
872
878
.10.1016/j.clinbiomech.2012.06.009
28.
Jungtaubl
,
D.
,
Schmitz
,
P.
,
Gross
,
S.
, and
Dendorfer
,
S.
,
2017
, “
FEA of the Transiliacal Internal Fixator as an Osteosynthesis of Pelvic Ring Fractures
,”
Proc. Int. Conf. Med. Biol. Eng.
,
62
, pp.
212
217
.10.1007/978-981-10-4166-2_32
29.
Shim
,
V.
,
Hoch
,
A.
,
Grunert
,
R.
,
Peldschus
,
S.
, and
Bohme
,
J.
,
2017
, “
Development of a Patient-Specific Finite Element Model for Predicting Implant Failure in Pelvic Ring Fracture Fixation
,”
Comput. Math. Methods Med.
,
2017
, pp.
1
11
.10.1155/2017/9403821
30.
Salo
,
Z.
,
Beek
,
M.
,
Wright
,
D.
, and
Marisa Whyne
,
C.
,
2015
, “
Computed Tomography Landmark-Based Semi-Automated Mesh Morphing and Mapping Techniques: Generation of Patient Specific Models of the Human Pelvis Without Segmentation
,”
J. Biomech.
,
48
(
6
), pp.
1125
1132
.10.1016/j.jbiomech.2015.01.013
31.
Li
,
Z.
,
Alonso
,
J. E.
,
Kim
,
J.-E.
,
Davidson
,
J. S.
,
Etheridge
,
B. S.
, and
Eberhardt
,
A. W.
,
2006
, “
Three-Dimensional Finite Element Models of the Human Pubic Symphysis With Viscohyperelastic Soft Tissues
,”
Ann. Biomed. Eng.,
34
(
9
), pp.
1452
1462
.10.1007/s10439-006-9145-1
32.
Dakin
,
G. J.
,
Arbelaez
,
R. A.
,
Molz
,
F. J.
,
Alonso
,
J. E.
,
Mann
,
K. A.
, and
Eberhardt
,
A. W.
,
2001
, “
Elastic and Viscoelastic Properties of the Human Pubic Symphysis Joint: Effects of Lateral Impact Loading
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
218
226
.10.1115/1.1372321
33.
Meinberg
,
E. G.
,
Agel
,
J.
,
Roberts
,
C. S.
,
Karam
,
M. D.
, and
Kellam
,
J. F.
,
2018
, “
Fracture and Dislocation Classification Compendium—2018
,”
J. Orthop. Trauma
,
32
(
1
), pp.
S1
S10
.10.1097/BOT.0000000000001063
34.
Shultz
,
S. J.
,
Houglum
,
P. A.
, and
Perrin
,
D. H.
,
2016
,
Examination of Musculoskeletal Injuries
, 4th ed.,
Human Kinetics
, Winsor, ON, Canada.
35.
Athanasiou
,
K. A.
,
Agarwal
,
A.
, and
Dzida
,
F. J.
,
1994
, “
Comparative Study of the Intrinsic Mechanical Properties of the Human Acetabular and Femoral Head Cartilage
,”
J. Orthop. Res.
,
12
(
3
), pp.
340
349
.10.1002/jor.1100120306
36.
Denis
,
F.
,
Davis
,
S.
, and
Comfort
,
T.
,
1988
, “
Sacral Fractures: An Important Problem. Retrospective Analysis of 236 Cases
,”
Clin. Orthop. Relat. Res.
, 227(
227
), pp.
67
81
.10.1097/00003086-198802000-00010
37.
Hao
,
A.
,
Wan
,
C.
,
Gao
,
X.
, and
Ji
,
T.
,
2011
, “
The Effect of Boundary Condition on the Biomechanics of a Human Pelvic Joint Under an Axial Compressive Load: A Three-Dimensional Finite Element Model
,”
ASME J. Biomech. Eng.
,
133
(
10
), p.
101006
.10.1115/1.4005223
38.
Ricci
,
P. L.
,
Maas
,
S.
,
Kelm
,
J.
, and
Gerich
,
T.
,
2018
, “
Finite Element Analysis of the Pelvic Including Gait Muscle Forces: An Investigation Into the Effect of Rami Fractures on Load Transmission
,”
J. Exp. Orthop.
,
5
(
1
), p.
33
.10.1186/s40634-018-0151-7
You do not currently have access to this content.