Abstract

Stenting has become an important adjunctive tool for assisting coil embolization in complex-shaped intracranial aneurysms. However, as a secondary effect, stent deployment has been related to both immediate and delayed remodeling of the local vasculature. Recent studies have demonstrated that this phenomenon may assume different roles depending on the treatment stage. However, the extent of such event on the intra-aneurysmal hemodynamics is still unclear; especially when performing two-step stent-assisted coiling (SAC). Therefore, we performed computational fluid dynamics (CFD) analysis of the blood flow in four bifurcation aneurysms focusing on the stent healing period found in SAC as a two-step maneuver. Our results show that by changing the local vasculature, the intra-aneurysmal hemodynamics changes considerably. However, even though changes do occur, they were not consistent among the cases. Furthermore, by changing the local vasculature not only the shear levels change but also the shear distribution on the aneurysm surface. Additionally, a geometric analysis alone can mislead the estimation of the novel hemodynamic environment after vascular remodeling, especially in the presence of mixing streams. Therefore, although the novel local vasculature might induce an improved hemodynamic environment, it is also plausible to expect that adverse hemodynamic conditions might occur. This could pose a particularly delicate condition since the aneurysm surface remains completely exposed to the novel hemodynamic environment during the stent healing period. Finally, our study emphasizes that vascular remodeling should be considered when assessing the hemodynamics in aneurysms treated with stents, especially when evaluating the earlier stages of the treatment process.

References

1.
Akpek
,
S.
,
Arat
,
A.
,
Morsi
,
H.
,
Klucznick
,
R. P.
,
Strother
,
C. M.
, and
Mawad
,
M. E.
,
2005
, “
Self-Expandable Stent- Assisted Coiling of Wide-Necked Intracranial Aneurysms: A Single-Center Experience
,”
Am. J. Neuroradiol.
,
26
(
5
), pp.
1223
1231
.https://pubmed.ncbi.nlm.nih.gov/15891189/
2.
Benitez
,
R. P.
,
Silva
,
M. T.
,
Klem
,
J.
,
Veznedaroglu
,
E.
, and
Rosenwasser
,
R. H.
,
2004
, “
Endovascular Occlusion of Wide-Necked Aneurysms With a New Intracranial Microstent (Neuroform) and Detachable Coils
,”
Neurosurgery
,
54
(
6
), pp.
1359
1368
.10.1227/01.NEU.0000124484.87635.CD
3.
Piotin
,
M.
, and
Blanc
,
R.
,
2014
, “
Balloons and Stents in the Endovascular Treatment of Cerebral Aneurysms: Vascular Anatomy Remodeled
,”
Front. Neurol.
,
5
, p.
41
.10.3389/fneur.2014.00041
4.
Babiker
,
M. H.
,
Gonzalez
,
L. F.
,
Ryan
,
J.
,
Albuquerque
,
F.
,
Collins
,
D.
,
Elvikis
,
A.
, and
Frakes
,
D. H.
,
2012
, “
Influence of Stent Configuration on Cerebral Aneurysm Fluid Dynamics
,”
J. Biomech.
,
45
(
3
), pp.
440
447
.10.1016/j.jbiomech.2011.12.016
5.
King
,
R.
,
Chueh
,
J.-Y.
,
van der Bom
,
I.
,
Silva
,
C.
,
Carniato
,
S.
,
Spilberg
,
G.
,
Wakhloo
,
A.
, and
Gounis
,
M.
,
2012
, “
The Effect of Intracranial Stent Implantation on the Curvature of the Cerebrovasculature
,”
Am. J. Neuroradiol.
,
33
(
9
), pp.
1657
1662
.10.3174/ajnr.A3062
6.
Gao
,
B.
,
Baharoglu
,
M.
,
Cohen
,
A.
, and
Malek
,
A.
,
2012
, “
Stent-Assisted Coiling of Intracranial Bifurcation Aneurysms Leads to Immediate and Delayed Intracranial Vascular Angle Remodeling
,”
Am. J. Neuroradiol.
,
33
(
4
), pp.
649
654
.10.3174/ajnr.A2841
7.
Huang
,
Q.-H.
,
Wu
,
Y.-F.
,
Xu
,
Y.
,
Hong
,
B.
,
Zhang
,
L.
, and
Liu
,
J.-M.
,
2011
, “
Vascular Geometry Change Because of Endovascular Stent Placement for Anterior Communicating Artery Aneurysms
,”
Am. J. Neuroradiol.
,
32
(
9
), pp.
1721
1725
.10.3174/ajnr.A2597
8.
Gao
,
B.
,
Baharoglu
,
M. I.
,
Cohen
,
A. D.
, and
Malek
,
A. M.
,
2013
, “
Y-Stent Coiling of Basilar Bifurcation Aneurysms Induces a Dynamic Angular Vascular Remodeling With Alteration of the Apical Wall Shear Stress Pattern
,”
Neurosurgery
,
72
(
4
), pp.
617
629
.10.1227/NEU.0b013e3182846d9f
9.
Gao
,
B.
,
Baharoglu
,
M. I.
, and
Malek
,
A. M.
,
2013
, “
Angular Remodeling in Single Stent-Assisted Coiling Displaces and Attenuates the Flow Impingement Zone at the Neck of Intracranial Bifurcation Aneurysms
,”
Neurosurgery
,
72
(
5
), pp.
739
748
.10.1227/NEU.0b013e318286fab3
10.
Jeong
,
W.
,
Han
,
M.
, and
Rhee
,
K.
,
2014
, “
The Hemodynamic Alterations Induced by the Vascular Angular Deformation in Stent-Assisted Coiling of Bifurcation Aneurysms
,”
Comput. Biol. Med.
,
53
, pp.
1
8
.10.1016/j.compbiomed.2014.07.006
11.
Voß
,
S.
,
Beuing
,
O.
,
Janiga
,
G.
, and
Berg
,
P.
,
2019
, “
Stent-Induced Vessel Deformation After Intracranial Aneurysm Treatment—A Hemodynamic Pilot Study
,”
Comput. Biol. Med.
,
111
, p.
103338
.10.1016/j.compbiomed.2019.103338
12.
Brassel
,
F.
,
Melber
,
K.
,
Schlunz-Hendann
,
M.
, and
Meila
,
D.
,
2016
, “
Kissing-Y Stenting for Endovascular Treatment of Complex Wide Necked Bifurcation Aneurysms Using Acandis Acclino Stents: Results and Literature Review
,”
J. NeuroInterventional Surg.
,
8
(
4
), pp.
386
395
.10.1136/neurintsurg-2015-011691
13.
Chalouhi
,
N.
,
Jabbour
,
P.
,
Singhal
,
S.
,
Drueding
,
R.
,
Starke
,
R. M.
,
Dalyai
,
R. T.
,
Tjoumakaris
,
S.
,
Gonzalez
,
L. F.
,
Dumont
,
A. S.
,
Rosenwasser
,
R.
, and
Randazzo
,
C. G.
,
2013
, “
Stent-Assisted Coiling of Intracranial Aneurysms: Predictors of Complications, Recanalization, and Outcome in 508 Cases
,”
Stroke
,
44
(
5
), pp.
1348
1353
.10.1161/STROKEAHA.111.000641
14.
Jou
,
L.-D.
, and
Mawad
,
M. E.
,
2011
, “
Hemodynamic Effect of Neuroform Stent on Intimal Hyperplasia and Thrombus Formation in a Carotid Aneurysm
,”
Medical Eng. Phys.
,
33
(
5
), pp.
573
580
.10.1016/j.medengphy.2010.12.013
15.
Ogilvy
,
C. S.
,
Natarajan
,
S. K.
,
Jahshan
,
S.
,
Karmon
,
Y.
,
Yang
,
X.
,
Snyder
,
K. V.
,
Hopkins
,
L. N.
,
Siddiqui
,
A. H.
, and
Levy
,
E. I.
,
2011
, “
Stent-Assisted Coiling of Paraclinoid Aneurysms: Risks and Effectiveness
,”
J. NeuroInterventional Surg.
,
3
(
1
), pp.
14
20
.10.1136/jnis.2010.002303
16.
Rohde
,
S.
,
Bendszus
,
M.
,
Hartmann
,
M.
, and
Hähnel
,
S.
,
2010
, “
Treatment of a Wide-Necked Aneurysm of the Anterior Cerebral Artery Using Two Enterprise Stents in “Y”-Configuration Stenting Technique and Coil Embolization: A Technical Note
,”
Neuroradiology
,
52
(
3
), pp.
231
235
.10.1007/s00234-009-0603-y
17.
Lozen
,
A.
,
Manjila
,
S.
,
Rhiew
,
R.
, and
Fessler
,
R.
,
2009
, “
Y-Stent-Assisted Coil Embolization for the Management of Unruptured Cerebral Aneurysms: Report of Six Cases
,”
Acta Neurochirurg.
,
151
(
12
), pp.
1663
1672
.10.1007/s00701-009-0436-9
18.
Cebral
,
J.
,
Ollikainen
,
E.
,
Chung
,
B.
,
Mut
,
F.
,
Sippola
,
V.
,
Jahromi
,
B.
,
Tulamo
,
R.
,
Hernesniemi
,
J.
,
Niemelä
,
M.
,
Robertson
,
A.
, and
Frösen
,
J.
,
2017
, “
Flow Conditions in the Intracranial Aneurysm Lumen Are Associated With Inflammation and Degenerative Changes of the Aneurysm Wall
,”
Am. J. Neuroradiol.
,
38
(
1
), pp.
119
126
.10.3174/ajnr.A4951
19.
Meng
,
H.
,
Tutino
,
V.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.10.3174/ajnr.A3558
20.
Tremmel
,
M.
,
Xiang
,
J.
,
Natarajan
,
S. K.
,
Hopkins
,
L. N.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
, and
Meng
,
H.
,
2010
, “
Alteration of Intraaneurysmal Hemodynamics for Flow Diversion Using Enterprise and Vision Stents
,”
World Neurosurg.
,
74
(
2–3
), pp.
306
315
.10.1016/j.wneu.2010.05.008
21.
Piccinelli
,
M.
,
Veneziani
,
A.
,
Steinman
,
D.
,
Remuzzi
,
A.
, and
Antiga
,
L.
,
2009
, “
A Framework for Geometric Analysis of Vascular Structures: Application to Cerebral Aneurysms
,”
IEEE Trans. Med. Imaging
,
28
(
8
), pp.
1141
1155
.10.1109/TMI.2009.2021652
22.
Isaksen
,
J. G.
,
Bazilevs
,
Y.
,
Kvamsdal
,
T.
,
Zhang
,
Y.
,
Kaspersen
,
J. H.
,
Waterloo
,
K.
,
Romner
,
B.
, and
Ingebrigtsen
,
T.
,
2008
, “
Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation
,”
Stroke
,
39
(
12
), pp.
3172
3178
.10.1161/STROKEAHA.107.503698
23.
Ford
,
M. D.
,
Alperin
,
N.
,
Lee
,
S. H.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2005
, “
Characterization of Volumetric Flow Rate Waveforms in the Normal Internal Carotid and Vertebral Arteries
,”
Physiol. Meas.
,
26
(
4
), pp.
477
488
.10.1088/0967-3334/26/4/013
24.
Zarrinkoob
,
L.
,
Ambarki
,
K.
,
Wåhlin
,
A.
,
Birgander
,
R.
,
Eklund
,
A.
, and
Malm
,
J.
,
2015
, “
Blood Flow Distribution in Cerebral Arteries
,”
J. Cerebral Blood Flow Metabolism
,
35
(
4
), pp.
648
654
.10.1038/jcbfm.2014.241
25.
Chau
,
Y.
,
Mondot
,
L.
,
Sachet
,
M.
,
Gaudart
,
J.
,
Fontaine
,
D.
,
Lonjon
,
M.
, and
Sédat
,
J.
,
2016
, “
Modification of Cerebral Vascular Anatomy Induced by Leo Stent Placement Depending on the Site of Stenting: A Series of 102 Cases
,”
Interventional Neuroradiol.
,
22
(
6
), pp.
666
673
.10.1177/1591019916660867
26.
De La Torre
,
Y.
,
Velasco
,
S.
,
Tasu
,
J.-P.
,
Wanpouille
,
C.
,
Chan
,
P.
,
Velasco
,
R.
,
Sztark
,
G.
,
Ingrand
,
P.
, and
Boucebci
,
S.
,
2018
, “
Impact of the Global Outflow Angle on Recanalization After Endovascular Treatment of Middle Cerebral Artery Bifurcation Aneurysms
,”
J. NeuroInterventional Surg.
,
10
(
12
), pp.
1174
1178
.10.1136/neurintsurg-2018-013803
27.
Ishii
,
A.
,
Chihara
,
H.
,
Kikuchi
,
T.
,
Arai
,
D.
,
Ikeda
,
H.
, and
Miyamoto
,
S.
,
2017
, “
Contribution of the Straightening Effect of the Parent Artery to Decreased Recanalization in Stent-Assisted Coiling of Large Aneurysms
,”
J. Neurosurg.
,
127
(
5
), pp.
1063
1069
.10.3171/2016.9.JNS16501
28.
Kono
,
K.
,
Shintani
,
A.
, and
Terada
,
T.
,
2014
, “
Hemodynamic Effects of Stent Struts Versus Straightening of Vessels in Stent-Assisted Coil Embolization for Sidewall Cerebral Aneurysms
,”
PLoS ONE
,
9
(
9
), p.
e108033
.10.1371/journal.pone.0108033
29.
Castro
,
M.
,
Putman
,
C.
,
Radaelli
,
A.
,
Frangi
,
A.
, and
Cebral
,
J.
,
2009
, “
Hemodynamics and Rupture of Terminal Cerebral Aneurysms
,”
Acad. Radiol.
,
16
(
10
), pp.
1201
1207
.10.1016/j.acra.2009.03.022
30.
Cebral
,
J. R.
,
Castro
,
M.
,
Burgess
,
J. E.
,
Pergolizzi
,
R. S.
,
Sheridan
,
M.
, and
Putman
,
C. M.
,
2005
, “
Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models
,”
Am. J. Neuroradiol.
,
26
(
10
), pp.
2550
2559
.
31.
Castro
,
M.
,
Putman
,
C.
,
Sheridan
,
M.
, and
Cebral
,
J.
,
2009
, “
Hemodynamic Patterns of Anterior Communicating Artery Aneurysms: A Possible Association With Rupture
,”
Am. J. Neuroradiol.
,
30
(
2
), pp.
297
302
.10.3174/ajnr.A1323
32.
Nyberg
,
E. M.
, and
Larson
,
T. C.
,
2014
, “
Beneficial Remodeling of Small Saccular Intracranial Aneurysms After Staged Stent Only Treatment: A Case Series
,”
J. Stroke Cerebrovasc. Dis.
,
23
(
1
), pp.
80
85
.10.1016/j.jstrokecerebrovasdis.2012.09.012
33.
Berg
,
P.
,
Saalfeld
,
S.
,
Voß
,
S.
,
Beuing
,
O.
, and
Janiga
,
G.
,
2019
, “
A Review on the Reliability of Hemodynamic Modeling in Intracranial Aneurysms: Why Computational Fluid Dynamics Alone Cannot Solve the Equation
,”
Neurosurg. Focus
,
47
(
1
), p.
E15
.10.3171/2019.4.FOCUS19181
34.
Peiffer
,
V.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
Computation in the Rabbit Aorta of a New Metric – the Transverse Wall Shear Stress – to Quantify the Multidirectional Character of Disturbed Blood Flow
,”
J. Biomech.
,
46
(
15
), pp.
2651
2658
.10.1016/j.jbiomech.2013.08.003
35.
Fukuda
,
S.
,
Shimogonya
,
Y.
, and
Yonemoto
,
N.
,
2019
, “
Differences in Cerebral Aneurysm Rupture Rate According to Arterial Anatomies Depend on the Hemodynamic Environment
,”
Am. J. Neuroradiol.
,
40
(
5
), pp.
834
839
.10.3174/ajnr.A6030
36.
Arzani
,
A.
, and
Shadden
,
S. C.
,
2016
, “
Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow
,”
ASME J. Biomech. Eng.
,
138
(
1
), p.
014503
.10.1115/1.4032056
37.
Arzani
,
A.
, and
Shadden
,
S. C.
,
2018
, “
Wall Shear Stress Fixed Points in Cardiovascular Fluid Mechanics
,”
J. Biomech.
,
73
, pp.
145
152
.10.1016/j.jbiomech.2018.03.034
38.
Wang
,
C.
,
Tian
,
Z.
,
Liu
,
J.
,
Jing
,
L.
,
Paliwal
,
N.
,
Wang
,
S.
,
Zhang
,
Y.
,
Xiang
,
J.
,
Siddiqui
,
A. H.
,
Meng
,
H.
, and
Yang
,
X.
,
2016
, “
Hemodynamic Alterations After Stent Implantation in 15 Cases of Intracranial Aneurysm
,”
Acta Neurochirurg.
,
158
(
4
), pp.
811
819
.10.1007/s00701-015-2696-x
39.
Shobayashi
,
Y.
,
Tateshima
,
S.
,
Kakizaki
,
R.
,
Sudo
,
R.
,
Tanishita
,
K.
, and
Vi Ñuela
,
F.
,
2013
, “
Intra-Aneurysmal Hemodynamic Alterations by a Self-Expandable Intracranial Stent and Flow Diversion Stent: High Intra-Aneurysmal Pressure Remains Regardless of Flow Velocity Reduction
,”
J. NeuroInterventional Surg.
,
5
(
Suppl 3
), pp.
iii38
iii42
.10.1136/neurintsurg-2012-010488
40.
Bernardini
,
A.
,
Larrabide
,
I.
,
Morales
,
H. G.
,
Pennati
,
G.
,
Petrini
,
L.
,
Cito
,
S.
, and
Frangi
,
A. F.
,
2011
, “
Influence of Different Computational Approaches for Stent Deployment on Cerebral Aneurysm Haemodynamics
,”
Interface Focus
,
1
(
3
), pp.
338
348
.10.1098/rsfs.2011.0004
41.
Roszelle
,
B. N.
,
Gonzalez
,
L. F.
,
Babiker
,
M. H.
,
Ryan
,
J.
,
Albuquerque
,
F. C.
, and
Frakes
,
D. H.
,
2013
, “
Flow Diverter Effect on Cerebral Aneurysm Hemodynamics: An In Vitro Comparison of Telescoping Stents and the Pipeline
,”
Neuroradiology
,
55
(
6
), pp.
751
758
.10.1007/s00234-013-1169-2
42.
Roszelle
,
B. N.
,
Babiker
,
M. H.
,
Hafner
,
W.
,
Gonzalez
,
L. F.
,
Albuquerque
,
F. C.
, and
Frakes
,
D. H.
,
2013
, “
In Vitro and in Silico Study of Intracranial Stent Treatments for Cerebral Aneurysms: Effects on Perforating Vessel Flows
,”
J. NeuroInterventional Surg.
,
5
(
4
), pp.
354
360
.10.1136/neurintsurg-2012-010322
43.
Wang
,
S.
,
Ding
,
G.
,
Zhang
,
Y.
, and
Yang
,
X.
,
2011
, “
Computational Haemodynamics in Two Idealised CerebralWide- Necked Aneurysms After Stent Placement
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
11
), pp.
927
937
.10.1080/10255842.2010.502531
You do not currently have access to this content.