Abstract

In vivo knee ligament forces are important to consider for informing rehabilitation or clinical interventions. However, they are difficult to directly measure during functional activities. Musculoskeletal models and simulations have become the primary methods by which to estimate in vivo ligament loading. Previous estimates of anterior cruciate ligament (ACL) forces range widely, suggesting that individualized anatomy may have an impact on these predictions. Using ten subject-specific (SS) lower limb musculoskeletal models, which include individualized musculoskeletal geometry, muscle architecture, and six degree-of-freedom knee joint kinematics from dynamic biplane radiography (DBR), this study provides SS estimates of ACL force (anteromedial-aACL; and posterolateral-pACL bundles) during the full gait cycle of treadmill walking. These forces are compared to estimates from scaled-generic (SG) musculoskeletal models to assess the effect of musculoskeletal knee joint anatomy on predicted forces and the benefit of SS modeling in this context. On average, the SS models demonstrated a double force peak during stance (0.39–0.43 xBW per bundle), while only a single force peak during stance was observed in the SG aACL. No significant differences were observed between continuous SG and SS ACL forces; however, root mean-squared differences between SS and SG predictions ranged from 0.08 xBW to 0.27 xBW, suggesting SG models do not reliably reflect forces predicted by SS models. Force predictions were also found to be highly sensitive to ligament resting length, with ±10% variations resulting in force differences of up to 84%. Overall, this study demonstrates the sensitivity of ACL force predictions to SS anatomy, specifically musculoskeletal joint geometry and ligament resting lengths, as well as the feasibility for generating SS musculoskeletal models for a group of subjects to predict in vivo tissue loading during functional activities.

References

1.
Fleming
,
B. C.
, and
Beynnon
,
B. D.
,
2004
, “
In Vivo Measurement of Ligament/Tendon Strains and Forces: A Review
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
318
328
.10.1023/B:ABME.0000017542.75080.86
2.
Shelburne
,
K. B.
,
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Torry
,
M. R.
,
2004
, “
Pattern of Anterior Cruciate Ligament Force in Normal Walking
,”
J. Biomech.
,
37
(
6
), pp.
797
805
.10.1016/j.jbiomech.2003.10.010
3.
Wu
,
J. L.
,
Hosseini
,
A.
,
Kozanek
,
M.
,
Gadikota
,
H. R.
,
Gill
,
T. J. T.
, and
Li
,
G.
,
2010
, “
Kinematics of the Anterior Cruciate Ligament During Gait
,”
Am. J. Sports Med.
,
38
(
7
), pp.
1475
1482
.10.1177/0363546510364240
4.
Taylor
,
K. A.
,
Cutcliffe
,
H. C.
,
Queen
,
R. M.
,
Utturkar
,
G. M.
,
Spritzer
,
C. E.
,
Garrett
,
W. E.
, and
DeFrate
,
L. E.
,
2013
, “
In Vivo Measurement of ACL Length and Relative Strain During Walking
,”
J. Biomech.
,
46
(
3
), pp.
478
483
.10.1016/j.jbiomech.2012.10.031
5.
Toutoungi
,
D. E.
,
Lu
,
T. W.
,
Leardini
,
A.
,
Catani
,
F.
, and
O'Connor
,
J. J.
,
2000
, “
Cruciate Ligament Forces in the Human Knee During Rehabilitation Exercises
,”
Clin. Biomech.
,
15
(
3
), pp.
176
187
.10.1016/S0268-0033(99)00063-7
6.
Collins
,
J. J.
, and
O'Connor
,
J. J.
,
1991
, “
Muscle-Ligament Interactions at the Knee During Walking
,”
Proc. Inst. Mech. Eng., Part H
,
205
(
1
), pp.
11
18
.10.1243/PIME_PROC_1991_205_256_02
7.
Collins
,
J. J.
,
1995
, “
The Redundant Nature of Locomotor Optimization Laws
,”
J. Biomech.
,
28
(
3
), pp.
251
267
.10.1016/0021-9290(94)00072-C
8.
Serpas
,
F.
,
Yanagawa
,
T.
, and
Pandy
,
M.
,
2002
, “
Forward-Dynamics Simulation of Anterior Cruciate Ligament Forces Developed During Isokinetic Dynamometry
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
1
), pp.
33
43
.10.1080/1025584021000001614
9.
Shelburne
,
K. B.
, and
Pandy
,
M. G.
,
1997
, “
A Musculoskeletal Model of the Knee for Evaluating Ligament Forces During Isometric Contractions
,”
J. Biomech.
,
30
(
2
), pp.
163
176
.10.1016/S0021-9290(96)00119-4
10.
Shelburne
,
K. B.
, and
Pandy
,
M. G.
,
1998
, “
Determinants of Cruciate-Ligament Loading During Rehabilitation Exercise
,”
Clin. Biomech.
,
13
(
6
), pp.
403
413
.10.1016/S0268-0033(98)00094-1
11.
Shelburne
,
K. B.
, and
Pandy
,
M. G.
,
2002
, “
A Dynamic Model of the Knee and Lower Limb for Simulating Rising Movements
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
2
), pp.
149
159
.10.1080/10255840290010265
12.
Moissenet
,
F.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2014
, “
A 3D Lower Limb Musculoskeletal Model for Simultaneous Estimation of Musculo-Tendon, Joint Contact, Ligament and Bone Forces During Gait
,”
J. Biomech.
,
47
(
1
), pp.
50
58
.10.1016/j.jbiomech.2013.10.015
13.
Harrington
,
I. J.
,
1976
, “
A Bioengineering Analysis of Force Actions at the Knee in Normal and Pathological Gait
,”
Biomed. Eng.
,
11
(
5
), pp.
167
172
.https://pubmed.ncbi.nlm.nih.gov/1276337/
14.
Scheys
,
L.
,
Spaepen
,
A.
,
Suetens
,
P.
, and
Jonkers
,
I.
,
2008
, “
Calculated Moment-Arm and Muscle-Tendon Lengths During Gait Differ Substantially Using MR Based Versus Rescaled Generic Lower-Limb Musculoskeletal Models
,”
Gait Posture
,
28
(
4
), pp.
640
648
.10.1016/j.gaitpost.2008.04.010
15.
Scheys
,
L.
,
Loeckx
,
D.
,
Spaepen
,
A.
,
Suetens
,
P.
, and
Jonkers
,
I.
,
2009
, “
Atlas-Based Non-Rigid Image Registration to Automatically Define Line-of-Action Muscle Models: A Validation Study
,”
J. Biomech.
,
42
(
5
), pp.
565
572
.10.1016/j.jbiomech.2008.12.014
16.
Scheys
,
L.
,
Desloovere
,
K.
,
Suetens
,
P.
, and
Jonkers
,
I.
,
2011
, “
Level of Subject-Specific Detail in Musculoskeletal Models Affects Hip Moment Arm Length Calculation During Gait in Pediatric Subjects With Increased Femoral Anteversion
,”
J. Biomech.
,
44
(
7
), pp.
1346
1353
.10.1016/j.jbiomech.2011.01.001
17.
Valente
,
G.
,
Pitto
,
L.
,
Testi
,
D.
,
Seth
,
A.
,
Delp
,
S. L.
,
Stagni
,
R.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2014
, “
Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?
,”
PLoS One
,
9
(
11
), p.
e112625
.10.1371/journal.pone.0112625
18.
Prinold
,
J. A.
,
Mazzà
,
C.
,
Di Marco
,
R.
,
Hannah
,
I.
,
Malattia
,
C.
,
Magni-Manzoni
,
S.
,
Petrarca
,
M.
,
Ronchetti
,
A. B.
,
Tanturri de Horatio
,
L.
,
van Dijkhuizen
,
E. H.
,
Wesarg
,
S.
,
Viceconti
,
M.
, and
Consortium
,
M.-P.
,
2016
, “
A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients With Juvenile Idiopathic Arthritis
,”
Ann. Biomed. Eng.
,
44
(
1
), pp.
247
257
.10.1007/s10439-015-1451-z
19.
Ackland
,
D. C.
,
Lin
,
Y. C.
, and
Pandy
,
M. G.
,
2012
, “
Sensitivity of Model Predictions of Muscle Function to Changes in Moment Arms and Muscle-Tendon Properties: A Monte Carlo Analysis
,”
J. Biomech.
,
45
(
8
), pp.
1463
1471
.10.1016/j.jbiomech.2012.02.023
20.
Navacchia
,
A.
,
Myers
,
C. A.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2016
, “
Prediction of In Vivo Knee Joint Loads Using a Global Probabilistic Analysis
,”
ASME J. Biomech. Eng.
,
138
(
3
), p.
031002
.10.1115/1.4032379
21.
Charles
,
J. P.
,
Cappellari
,
O.
,
Spence
,
A. J.
,
Wells
,
D. J.
, and
Hutchinson
,
J. R.
,
2016
, “
Muscle Moment Arms and Sensitivity Analysis of a Mouse Hindlimb Musculoskeletal Model
,”
J. Anat.
,
229
(
4
), pp.
514
535
.10.1111/joa.12461
22.
Imani Nejad
,
Z.
,
Khalili
,
K.
,
Hosseini Nasab
,
S. H.
,
Schutz
,
P.
,
Damm
,
P.
,
Trepczynski
,
A.
,
Taylor
,
W. R.
, and
Smith
,
C. R.
,
2020
, “
The Capacity of Generic Musculoskeletal Simulations to Predict Knee Joint Loading Using the CAMS-Knee Datasets
,”
Ann. Biomed. Eng.
,
48
(
4
), pp.
1442
1442
.10.1007/s10439-020-02480-6
23.
Charles
,
J. P.
,
Grant
,
B.
,
D'Août
,
K.
, and
Bates
,
K. T.
,
2020
, “
Subject-Specific Muscle Properties From Diffusion Tensor Imaging Significantly Improve the Accuracy of Musculoskeletal Models
,”
J. Anatomy
,
237
, pp.
941
959
.10.1111/joa.13261
24.
Anderst
,
W.
,
Zauel
,
R.
,
Bishop
,
J.
,
Demps
,
E.
, and
Tashman
,
S.
,
2009
, “
Validation of Three-Dimensional Model-Based Tibio-Femoral Tracking During Running
,”
Med. Eng. Phys.
,
31
(
1
), pp.
10
16
.10.1016/j.medengphy.2008.03.003
25.
Zheng
,
L.
,
Li
,
K.
,
Shetye
,
S.
, and
Zhang
,
X.
,
2014
, “
Integrating Dynamic Stereo-Radiography and Surface-Based Motion Data for Subject-Specific Musculoskeletal Dynamic Modeling
,”
J. Biomech.
,
47
(
12
), pp.
3217
3221
.10.1016/j.jbiomech.2014.08.009
26.
Guess
,
T. M.
,
Liu
,
H.
,
Bhashyam
,
S.
, and
Thiagarajan
,
G.
,
2013
, “
A Multibody Knee Model With Discrete Cartilage Prediction of Tibio-Femoral Contact Mechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
3
), pp.
256
270
.10.1080/10255842.2011.617004
27.
Charles
,
J. P.
,
Suntaxi
,
F.
, and
Anderst
,
W. J.
,
2019
, “
In Vivo Human Lower Limb Muscle Architecture Dataset Obtained Using Diffusion Tensor Imaging
,”
PLoS One
,
14
(
10
), p.
e0223531
.10.1371/journal.pone.0223531
28.
Charles
,
J. P.
,
Moon
,
C. H.
, and
Anderst
,
W.
,
2019
, “
Determining Subject-Specific Lower-Limb Muscle Architecture Data for Musculoskeletal Models Using Diffusion Tensor MRI
,”
ASME J. Biomech. Eng.
,
141
(
6
), p.
060905
.10.1115/1.4040946
29.
Valente
,
G.
,
Crimi
,
G.
,
Vanella
,
N.
,
Schileo
,
E.
, and
Taddei
,
F.
,
2017
, “
nmsBuilder: Freeware to Create Subject-Specific Musculoskeletal Models for OpenSim
,”
Comput. Methods Programs Biomed.
,
152
, pp.
85
92
.10.1016/j.cmpb.2017.09.012
30.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.10.1109/10.102791
31.
Van der Helm
,
F. C.
,
Veeger
,
H. E.
,
Pronk
,
G. M.
,
Van der Woude
,
L. H.
, and
Rozendal
,
R. H.
,
1992
, “
Geometry Parameters for Musculoskeletal Modelling of the Shoulder System
,”
J. Biomech.
,
25
(
2
), pp.
129
144
.10.1016/0021-9290(92)90270-B
32.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
33.
Nagai
,
K.
,
Gale
,
T.
,
Chiba
,
D.
,
Su
,
F.
,
Fu
,
F.
, and
Anderst
,
W.
,
2019
, “
The Complex Relationship Between In Vivo ACL Elongation and Knee Kinematics During Walking and Running
,”
J. Orthop. Res.
,
37
(
9
), pp.
1920
1928
.10.1002/jor.24330
34.
Xu
,
H.
,
Bloswick
,
D.
, and
Merryweather
,
A.
,
2015
, “
An Improved OpenSim Gait Model With Multiple Degrees of Freedom Knee Joint and Knee Ligaments
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
11
), pp.
1217
1224
.10.1080/10255842.2014.889689
35.
Stanev
,
D.
,
Moustakas
,
K.
,
Gliatis
,
J.
, and
Koutsojannis
,
C.
,
2016
, “
ACL Reconstruction Decision Support. Personalized Simulation of the Lachman Test and Custom Activities
,”
Methods Inf. Med.
,
55
(
1
), pp.
98
105
.10.3414/ME14-02-0022
36.
Bloemker
,
K. H.
,
Guess
,
T. M.
,
Maletsky
,
L.
, and
Dodd
,
K.
,
2012
, “
Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths
,”
Open Biomed. Eng. J.
,
6
(
1
), pp.
33
41
.10.2174/1874120701206010033
37.
Rajagopal
,
A.
,
Dembia
,
C. L.
,
DeMers
,
M. S.
,
Delp
,
D. D.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2016
, “
Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2068
2079
.10.1109/TBME.2016.2586891
38.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D'Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion–Part I: Ankle, Hip, and Spine. International Society of Biomechanics
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
39.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
40.
Gale
,
T.
, and
Anderst
,
W.
,
2019
, “
Asymmetry in Healthy Adult Knee Kinematics Revealed Through Biplane Radiography of the Full Gait Cycle
,”
J. Orthop. Res.
,
37
(
3
), pp.
609
614
.10.1002/jor.24222
41.
Kutzner
,
I.
,
Stephan
,
D.
,
Dymke
,
J.
,
Bender
,
A.
,
Graichen
,
F.
, and
Bergmann
,
G.
,
2013
, “
The Influence of Footwear on Knee Joint Loading During Walking—In Vivo Load Measurements With Instrumented Knee Implants
,”
J. Biomech.
,
46
(
4
), pp.
796
800
.10.1016/j.jbiomech.2012.11.020
42.
Pataky
,
T. C.
,
2010
, “
Generalized n-Dimensional Biomechanical Field Analysis Using Statistical Parametric Mapping
,”
J. Biomech.
,
43
(
10
), pp.
1976
1982
.10.1016/j.jbiomech.2010.03.008
43.
Scanlan
,
S. F.
,
Lai
,
J.
,
Donahue
,
J. P.
, and
Andriacchi
,
T. P.
,
2012
, “
Variations in the Three-Dimensional Location and Orientation of the ACL in Healthy Subjects Relative to Patients After Transtibial ACL Reconstruction
,”
J. Orthop. Res.
,
30
(
6
), pp.
910
918
.10.1002/jor.22011
44.
Beynnon
,
B.
,
Yu
,
J.
,
Huston
,
D.
,
Fleming
,
B.
,
Johnson
,
R.
,
Haugh
,
L.
, and
Pope
,
M. H.
,
1996
, “
A Sagittal Plane Model of the Knee and Cruciate Ligaments With Application of a Sensitivity Analysis
,”
ASME J. Biomech. Eng.
,
118
(
2
), pp.
227
239
.10.1115/1.2795965
45.
Eby
,
S. F.
,
Song
,
P.
,
Chen
,
S.
,
Chen
,
Q.
,
Greenleaf
,
J. F.
, and
An
,
K. N.
,
2013
, “
Validation of Shear Wave Elastography in Skeletal Muscle
,”
J. Biomech.
,
46
(
14
), pp.
2381
2387
.10.1016/j.jbiomech.2013.07.033
46.
Hatta
,
T.
,
Giambini
,
H.
,
Itoigawa
,
Y.
,
Hooke
,
A. W.
,
Sperling
,
J. W.
,
Steinmann
,
S. P.
,
Itoi
,
E.
, and
An
,
K. N.
,
2017
, “
Quantifying Extensibility of Rotator Cuff Muscle With Tendon Rupture Using Shear Wave Elastography: A Cadaveric Study
,”
J. Biomech.
,
61
, pp.
131
136
.10.1016/j.jbiomech.2017.07.009
47.
Low
,
G.
,
Kruse
,
S. A.
, and
Lomas
,
D. J.
,
2016
, “
General Review of Magnetic Resonance Elastography
,”
World J. Radiol.
,
8
(
1
), pp.
59
72
.10.4329/wjr.v8.i1.59
48.
Mariappan
,
Y. K.
,
Glaser
,
K. J.
, and
Ehman
,
R. L.
,
2010
, “
Magnetic Resonance Elastography: A Review
,”
Clin. Anat.
,
23
(
5
), pp.
497
511
.10.1002/ca.21006
49.
Slane
,
L. C.
,
Slane
,
J. A.
,
D'Hooge
,
J.
, and
Scheys
,
L.
,
2017
, “
The Challenges of Measuring In Vivo Knee Collateral Ligament Strains Using Ultrasound
,”
J. Biomech.
,
61
, pp.
258
262
.10.1016/j.jbiomech.2017.07.020
50.
Nasseri
,
A.
,
Khataee
,
H.
,
Bryant
,
A. L.
,
Lloyd
,
D. G.
, and
Saxby
,
D. J.
,
2020
, “
Modelling the Loading Mechanics of Anterior Cruciate Ligament
,”
Comput. Methods Programs Biomed.
,
184
, p.
105098
.10.1016/j.cmpb.2019.105098
51.
van den Bogert
,
A. J.
,
Reinschmidt
,
C.
, and
Lundberg
,
A.
,
2008
, “
Helical Axes of Skeletal Knee Joint Motion During Running
,”
J. Biomech.
,
41
(
8
), pp.
1632
1638
.10.1016/j.jbiomech.2008.03.018
52.
Duthon
,
V. B.
,
Barea
,
C.
,
Abrassart
,
S.
,
Fasel
,
J. H.
,
Fritschy
,
D.
, and
Menetrey
,
J.
,
2006
, “
Anatomy of the Anterior Cruciate Ligament
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
14
(
3
), pp.
204
213
.10.1007/s00167-005-0679-9
You do not currently have access to this content.