Abstract

The objectives of this study are to experimentally investigate the effects of the dielectric material and the package stiffness on the durability and the efficiency of a previously developed triboelectric-based instrumented knee implant prototype. The proposed smart knee implant may provide useful information about prosthesis health and its functionality after a total knee replacement (TKR) by routine monitoring of tibiofemoral load transfer without the need for any external power source. The triboelectric powered load sensing by the proposed TKR system needs to be functional throughout the entire life of a knee replacement. The power output of the triboelectric system depends on the surface charge generations and accumulations on its dielectric material, and the force that transmits through its housing into the tribo-materials. The properties of the dielectric material and the package stiffness can significantly influence the reliability of the proposed device. For such a TKR system, a compliant mechanism with the ideal material selection can improve its state of the art. We investigated the performance of three vertical contact mode triboelectric generators made with three different dielectric materials: polydimethylsiloxane (PDMS), fluorinated ethylene propylene (FEP), and polytetrafluoroethylene (PTFE). To investigate the effect of package stiffness, we tested two Ti–PDMS–Ti harvesters inside a polyethylene and a Ti6Al4V package. At 1500 N of sinusoidal loads, the harvesters could generate 67.73μW and 19.81μW of mean apparent power in parallel and single connections in the polyethylene package, which was 32 and 17 times greater than the power recorded in the Ti assembly, respectively.

References

1.
Sharkey
,
P. F.
,
Lichstein
,
P. M.
,
Shen
,
C.
,
Tokarski
,
A. T.
, and
Parvizi
,
J.
,
2014
, “
Why Are Total Knee Arthroplasties Failing Today–Has Anything Changed After 10 Years?
,”
J. Arthroplasty
,
29
(
9
), pp.
1774
1778
.10.1016/j.arth.2013.07.024
2.
Suarez
,
J.
,
Griffin
,
W.
,
Springer
,
B.
,
Fehring
,
T.
,
Mason
,
J. B.
, and
Odum
,
S.
,
2008
, “
Why Do Revision Knee Arthroplasties Fail?
,”
J. Arthroplasty
,
23
(
6
), pp.
99
103
.10.1016/j.arth.2008.04.020
3.
Dorr
,
L. D.
, and
Boiardo
,
R. A.
,
1986
, “
Technical Considerations in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
, (
205
), pp.
5
11
.https://pubmed.ncbi.nlm.nih.gov/3516503/
4.
Kaufman
,
K. R.
,
Kovacevic
,
N.
,
Irby
,
S. E.
, and
Colwell
,
C. W.
,
1996
, “
Instrumented Implant for Measuring Tibiofemoral Forces
,”
J. Biomech.
,
29
(
5
), pp.
667
671
.10.1016/0021-9290(95)00124-7
5.
Platt
,
S. R.
,
Farritor
,
S.
,
Garvin
,
K.
, and
Haider
,
H.
,
2005
, “
The Use of Piezoelectric Ceramics for Electric Power Generation Within Orthopedic Implants
,”
IEEE/ASME Trans. Mechatronics
,
10
(
4
), pp.
455
461
.10.1109/TMECH.2005.852482
6.
D'Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
,
Slamin
,
J. E.
, and
Colwell
,
C. W.
,
2006
, “
Tibial Forces Measured In Vivo After Total Knee Arthroplasty
,”
J. Arthroplasty
,
21
(
2
), pp.
255
262
.10.1016/j.arth.2005.07.011
7.
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2007
, “
Design, Calibration and Pre-Clinical Testing of an Instrumented Tibial Tray
,”
J. Biomech.
,
40
, pp.
S4
S10
.10.1016/j.jbiomech.2007.02.014
8.
Almouahed
,
S.
,
Gouriou
,
M.
,
Hamitouche
,
C.
,
Stindel
,
E.
, and
Roux
,
C.
,
2011
, “
Design and Evaluation of Instrumented Smart Knee Implant
,”
IEEE Trans. Biomed. Eng.
,
58
(
4
), pp.
971
982
.10.1109/TBME.2010.2058806
9.
Luciano
,
V.
,
Sardini
,
E.
,
Serpelloni
,
M.
, and
Baronio
,
G.
,
2012
, “
Analysis of an Electromechanical Generator Implanted in a Human Total Knee Prosthesis
,”
IEEE Sensors Applications Symposium Proceedings
, Brescia, Italy, Feb. 7–9,
pp.
1
5
.10.1109/SAS.2012.6166273
10.
D'Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
,
Chien
,
S.
, and
Colwell
,
C. W.
, Jr.
,
2007
, “
In Vivo Knee Moments and Shear After Total Knee Arthroplasty
,”
J. Biomech.
,
40
, pp.
S11
S17
.10.1016/j.jbiomech.2007.03.004
11.
Kirking
,
B.
,
Krevolin
,
J.
,
Townsend
,
C.
,
Colwell
,
C. W.
, Jr.
, and
D'Lima
,
D. D.
,
2006
, “
A Multiaxial Force-Sensing Implantable Tibial Prosthesis
,”
J. Biomech.
,
39
(
9
), pp.
1744
1751
.10.1016/j.jbiomech.2005.05.023
12.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.10.1016/j.jbiomech.2010.03.046
13.
Kutzner
,
I.
,
Trepczynski
,
A.
,
Heller
,
M. O.
, and
Bergmann
,
G.
,
2013
, “
Knee Adduction Moment and Medial Contact Force–Facts About Their Correlation During Gait
,”
PLoS One
,
8
(
12
), p.
e81036
.10.1371/journal.pone.0081036
14.
Bergmann
,
G.
,
Bender
,
A.
,
Graichen
,
F.
,
Dymke
,
J.
,
Rohlmann
,
A.
,
Trepczynski
,
A.
,
Heller
,
M. O.
, and
Kutzner
,
I.
,
2014
, “
Standardized Loads Acting in Knee Implants
,”
PLoS One
,
9
(
1
), p.
e86035
.10.1371/journal.pone.0086035
15.
Graichen
,
F.
,
Arnold
,
R.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2007
, “
Implantable 9-Channel Telemetry System for In Vivo Load Measurements With Orthopedic Implants
,”
IEEE Trans. Biomed. Eng.
,
54
(
2
), pp.
253
261
.10.1109/TBME.2006.886857
16.
Paulo
,
J.
, and
Gaspar
,
P. D.
,
2010
, “
Review and Future Trend of Energy Harvesting Methods for Portable Medical Devices
,”
Proceedings of the World Congress on Engineering
, Vol.
2
, London, UK, June 30–July 2,
WCE
, pp.
168
196
.https://www.researchgate.net/publication/45534516_Review_and_Future_Trend_of_Energy_Harvesting_Methods_for_Portable_Medical_Devices
17.
Zhang
,
X.
,
Jiang
,
H.
,
Zhang
,
L.
,
Zhang
,
C.
,
Wang
,
Z.
, and
Chen
,
X.
,
2010
, “
An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications
,”
IEEE Trans. Biomed. Circuits Syst.
,
4
(
1
), pp.
11
18
.10.1109/TBCAS.2009.2031627
18.
Parvez Mahmud
,
M.
,
Huda
,
N.
,
Farjana
,
S. H.
,
Asadnia
,
M.
, and
Lang
,
C.
,
2018
, “
Recent Advances in Nanogenerator-Driven Self-Powered Implantable Biomedical Devices
,”
Adv. Energy Mater.
,
8
(
2
), p.
1701210
.10.1002/aenm.201701210
19.
Almouahed
,
S.
,
Gouriou
,
M.
,
Hamitouche
,
C.
,
Stindel
,
E.
, and
Roux
,
C.
,
2011
, “
The Use of Piezoceramics as Electrical Energy Harvesters Within Instrumented Knee Implant During Walking
,”
IEEE/ASME Trans. Mechatronics
,
16
(
5
), pp.
799
807
.10.1109/TMECH.2011.2159512
20.
Safaei
,
M.
,
Meneghini
,
R. M.
, and
Anton
,
S. R.
,
2018
, “
Energy Harvesting and Sensing With Embedded Piezoelectric Ceramics in Knee Implants
,”
IEEE/ASME Trans. Mechatronics
,
23
(
2
), pp.
864
874
.10.1109/TMECH.2018.2794182
21.
Ibrahim
,
A.
,
Jain
,
M.
,
Salman
,
E.
,
Willing
,
R.
, and
Towfighian
,
S.
,
2019
, “
A Smart Knee Implant Using Triboelectric Energy Harvesters
,”
Smart Mater. Struct.
,
28
(
2
), p.
025040
.10.1088/1361-665X/aaf3f1
22.
Ibrahim
,
A.
,
Yamomo
,
G.
,
Willing
,
R.
, and
Towfighian
,
S.
,
2019
, “
Analysis of a Triboelectric Energy Harvester for Total Knee Replacements Under Gait Loading
,”
Proc. SPIE
10967
, p.
109671D
.10.1117/12.2515351
23.
Ibrahim
,
A.
,
Yamomo
,
G.
,
Willing
,
R.
, and
Towfighian
,
S.
,
2020
, “
Parametric Study of a Triboelectric Transducer in Total Knee Replacement Application
,”
J. Intell. Mater. Syst. Struct.
, 32(1), epub.10.1177/1045389X20948581
24.
Hossain
,
N. A.
,
Yamomo
,
G.
,
Willing
,
R.
, and
Towfighian
,
S.
,
2020
, “
Characterization of a Packaged Triboelectric Harvester Under Simulated Gait Loading for Total Knee Replacement
,”
IEEE/ASME Trans. Mechatronics
, epub.10.1109/TMECH.2021.3049327
25.
Wang
,
Z. L.
,
2013
, “
Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors
,”
ACS Nano
,
7
(
11
), pp.
9533
9557
.10.1021/nn404614z
26.
Zheng
,
Q.
,
Shi
,
B.
,
Li
,
Z.
, and
Wang
,
Z. L.
,
2017
, “
Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems
,”
Adv. Sci.
,
4
(
7
), p.
1700029
.10.1002/advs.201700029
27.
Wang
,
Z. L.
,
2017
, “
On Maxwell's Displacement Current for Energy and Sensors: The Origin of Nanogenerators
,”
Mater. Today
,
20
(
2
), pp.
74
82
.10.1016/j.mattod.2016.12.001
28.
Ibrahim
,
A.
,
Ramini
,
A.
, and
Towfighian
,
S.
,
2018
, “
Experimental and Theoretical Investigation of an Impact Vibration Harvester With Triboelectric Transduction
,”
J. Sound Vib.
,
416
, pp.
111
124
.10.1016/j.jsv.2017.11.036
29.
Nelson
,
D.
,
Ibrahim
,
A.
, and
Towfighian
,
S.
,
2019
, “
Dynamics of a Threshold Shock Sensor: Combining Bi-Stability and Triboelectricity
,”
Sens. Actuators A
,
285
, pp.
666
675
.10.1016/j.sna.2018.11.026
30.
Seol
,
M.-L.
,
Lee
,
S.-H.
,
Han
,
J.-W.
,
Kim
,
D.
,
Cho
,
G.-H.
, and
Choi
,
Y.-K.
,
2015
, “
Impact of Contact Pressure on Output Voltage of Triboelectric Nanogenerator Based on Deformation of Interfacial Structures
,”
Nano Energy
,
17
pp.
63
71
.10.1016/j.nanoen.2015.08.005
31.
Lin
,
L.
,
Xie
,
Y.
,
Wang
,
S.
,
Wu
,
W.
,
Niu
,
S.
,
Wen
,
X.
, and
Wang
,
Z. L.
,
2013
, “
Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging
,”
ACS Nano
,
7
(
9
), pp.
8266
8274
.10.1021/nn4037514
32.
Fan
,
F.-R.
,
Lin
,
L.
,
Zhu
,
G.
,
Wu
,
W.
,
Zhang
,
R.
, and
Wang
,
Z. L.
,
2012
, “
Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films
,”
Nano Lett.
,
12
(
6
), pp.
3109
3114
.10.1021/nl300988z
33.
Yoo
,
J.
,
Yoo
,
D.
,
Lee
,
S.
,
Sim
,
J.-Y.
,
Hwang
,
W.
,
Choi
,
D.
, and
Kim
,
D. S.
,
2019
, “
Extremely High and Elongated Power Output From a Mechanical Mediator-Assisted Triboelectric Nanogenerator Driven by the Biomechanical Energy
,”
Nano Energy
,
56
, pp.
851
858
.10.1016/j.nanoen.2018.11.083
34.
Choi
,
S.
,
Cho
,
S.
,
Yun
,
Y.
,
Jang
,
S.
,
Choi
,
J. H.
,
Ra
,
Y.
,
La
,
M.
,
Park
,
S. J.
, and
Choi
,
D.
,
2020
, “
Development of a High-Performance Handheld Triboelectric Nanogenerator With a Lightweight Power Transmission Unit
,”
Adv. Mater. Technol.
,
5
(
4
), p.
2000003
.10.1002/admt.202000003
35.
Cho
,
S.
,
Yun
,
Y.
,
Jang
,
S.
,
Ra
,
Y.
,
Choi
,
J. H.
,
Hwang
,
H. J.
,
Choi
,
D.
, and
Choi
,
D.
,
2020
, “
Universal Biomechanical Energy Harvesting From Joint Movements Using a Direction-Switchable Triboelectric Nanogenerator
,”
Nano Energy
,
71
, p.
104584
.10.1016/j.nanoen.2020.104584
36.
Yun
,
Y.
,
Jang
,
S.
,
Cho
,
S.
,
Lee
,
S. H.
,
Hwang
,
H. J.
, and
Choi
,
D.
,
2021
, “
Exo-Shoe Triboelectric Nanogenerator: Toward High-Performance Wearable Biomechanical Energy Harvester
,”
Nano Energy
,
80
, p.
105525
.10.1016/j.nanoen.2020.105525
37.
Jain
,
M.
,
Ibrahim
,
A.
,
Salman
,
E.
,
Stanacevic
,
M.
,
Willing
,
R.
, and
Towfighian
,
S.
,
2019
, “
Frontend Electronic System for Triboelectric Harvester in a Smart Knee Implant
,” IEEE 62nd International Midwest Symposium on Circuits and Systems (
MWSCAS
), Dallas, TX, Aug. 4–7, pp.
386
389
.10.1109/MWSCAS.2019.8884972
38.
Cao
,
L.
,
Dolovich
,
A. T.
,
Chen
,
A.
, and
Zhang
,
W. C.
,
2018
, “
Topology Optimization of Efficient and Strong Hybrid Compliant Mechanisms Using a Mixed Mesh of Beams and Flexure Hinges With Strength Control
,”
Mech. Mach. Theory
,
121
, pp.
213
227
.10.1016/j.mechmachtheory.2017.10.022
39.
Li
,
S.
,
Nie
,
J.
,
Shi
,
Y.
,
Tao
,
X.
,
Wang
,
F.
,
Tian
,
J.
,
Lin
,
S.
,
Chen
,
X.
, and
Wang
,
Z. L.
,
2020
, “
Contributions of Different Functional Groups to Contact Electrification of Polymers
,”
Adv. Mater.
,
32
(
25
), p.
2001307
.10.1002/adma.202001307
40.
Lim
,
G.-H.
,
Kwak
,
S. S.
,
Kwon
,
N.
,
Kim
,
T.
,
Kim
,
H.
,
Kim
,
S. M.
,
Kim
,
S.-W.
, and
Lim
,
B.
,
2017
, “
Fully Stretchable and Highly Durable Triboelectric Nanogenerators Based on Gold-Nanosheet Electrodes for Self-Powered Human-Motion Detection
,”
Nano Energy
,
42
, pp.
300
306
.10.1016/j.nanoen.2017.11.001
41.
Lin
,
H.
,
He
,
M.
,
Jing
,
Q.
,
Yang
,
W.
,
Wang
,
S.
,
Liu
,
Y.
,
Zhang
,
Y.
,
Li
,
J.
,
Li
,
N.
,
Ma
,
Y.
,
Wang
,
L.
, and
Xie
,
Y.
,
2019
, “
Angle-Shaped Triboelectric Nanogenerator for Harvesting Environmental Wind Energy
,”
Nano Energy
,
56
, pp.
269
276
.10.1016/j.nanoen.2018.11.037
42.
Zhang
,
H.
,
Feng
,
S.
,
He
,
D.
,
Xu
,
Y.
,
Yang
,
M.
, and
Bai
,
J.
,
2018
, “
An Electret Film-Based Triboelectric Nanogenerator With Largely Improved Performance Via a Tape-Peeling Charging Method
,”
Nano Energy
,
48
, pp.
256
265
.10.1016/j.nanoen.2018.03.051
43.
Sidambe
,
A. T.
,
2014
, “
Biocompatibility of Advanced Manufactured Titanium Implants—A Review
,”
Materials
,
7
(
12
), pp.
8168
8188
.10.3390/ma7128168
44.
Hossain
,
N. A.
,
Razavi
,
M. J.
, and
Towfighian
,
S.
,
2020
, “
Analysis of Mechanical Deformation Effect on the Voltage Generation of a Vertical Contact Mode Triboelectric Generator
,”
J. Micromech. Microeng.
,
30
(
4
), p.
045009
.10.1088/1361-6439/ab6c74
45.
Yamomo
,
G.
,
Hossain
,
N.
,
Towfighian
,
S.
, and
Willing
,
R.
,
2020
, “
Design and Analysis of a Compliant 3D Printed Energy Harvester Housing for Knee Implants
,”
Med. Eng. Phys.
, 88, pp.
59
68
. 10.1016/j.medengphy.2020.12.008
46.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2017
, “
A Review of Computational Musculoskeletal Analysis of Human Lower Extremities
,”
Human Model. Bio-Inspired Rob.
, pp.
37
73
. 10.1016/B978-0-12-803137-7.00003-3
47.
Niu
,
S.
,
Liu
,
Y.
,
Wang
,
S.
,
Lin
,
L.
,
Zhou
,
Y. S.
,
Hu
,
Y.
, and
Wang
,
Z. L.
,
2014
, “
Theoretical Investigation and Structural Optimization of Single-Electrode Triboelectric Nanogenerators
,”
Adv. Funct. Mater.
,
24
(
22
), pp.
3332
3340
.10.1002/adfm.201303799
48.
Niu
,
S.
,
Zhou
,
Y. S.
,
Wang
,
S.
,
Liu
,
Y.
,
Lin
,
L.
,
Bando
,
Y.
, and
Wang
,
Z. L.
,
2014
, “
Simulation Method for Optimizing the Performance of an Integrated Triboelectric Nanogenerator Energy Harvesting System
,”
Nano Energy
,
8
, pp.
150
156
.10.1016/j.nanoen.2014.05.018
49.
Lacks
,
D. J.
, and
Sankaran
,
R. M.
,
2011
, “
Contact Electrification of Insulating Materials
,”
J. Phys. D
,
44
(
45
), p.
453001
.10.1088/0022-3727/44/45/453001
You do not currently have access to this content.