Abstract

The primary aim of this study was to validate predictions of human knee-joint contact mechanics (specifically, contact pressure, contact area, and contact force) derived from finite-element models of the tibiofemoral and patellofemoral joints against corresponding measurements obtained in vitro during simulated weight-bearing activity. A secondary aim was to perform sensitivity analyses of the model calculations to identify those parameters that most significantly affect model predictions of joint contact pressure, area, and force. Joint pressures in the medial and lateral compartments of the tibiofemoral and patellofemoral joints were measured in vitro during two simulated weight-bearing activities: stair descent and squatting. Model-predicted joint contact pressure distribution maps were consistent with those obtained from experiment. Normalized root-mean-square errors between the measured and calculated contact variables were on the order of 15%. Pearson correlations between the time histories of model-predicted and measured contact variables were generally above 0.8. Mean errors in the calculated center-of-pressure locations were 3.1 mm for the tibiofemoral joint and 2.1 mm for the patellofemoral joint. Model predictions of joint contact mechanics were most sensitive to changes in the material properties and geometry of the meniscus and cartilage, particularly estimates of peak contact pressure. The validated finite element modeling framework offers a useful tool for noninvasive determination of knee-joint contact mechanics during dynamic activity under physiological loading conditions.

References

1.
Pandy
,
M. G.
, and
Andriacchi
,
T. P.
,
2010
, “
Muscle and Joint Function in Human Locomotion
,”
Annu. Rev. Biomed. Eng.
,
12
, pp.
401
433
.10.1146/annurev-bioeng-070909-105259
2.
Ethgen
,
O.
,
Bruyere
,
O.
,
Richy
,
F.
,
Dardennes
,
C.
, and
Reginster
,
J.-Y.
,
2004
, “
Health-Related Quality of Life in Total Hip and Total Knee Arthroplasty: A Qualitative and Systematic Review of the Literature
,”
J. Bone Jt. Surg.
,
86
(
5
), pp.
963
974
.10.2106/00004623-200405000-00012
3.
Andriacchi
,
T. P.
, and
Mündermann
,
A.
,
2006
, “
The Role of Ambulatory Mechanics in the Initiation and Progression of Knee Osteoarthritis
,”
Curr. Opin. Rheumatol.
,
18
(
5
), pp.
514
518
.10.1097/01.bor.0000240365.16842.4e
4.
Andriacchi
,
T. P.
,
Mundermann
,
A.
,
Smith
,
R. L.
,
Alexander
,
E. J.
,
Dyrby
,
C. O.
, and
Koo
,
S.
,
2004
, “
A Framework for the In Vivo Pathomechanics of Osteoarthritis at the Knee
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
447
457
.10.1023/B:ABME.0000017541.82498.37
5.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
6.
Kinney
,
A. L.
,
Besier
,
T. F.
,
D'Lima
,
D. D.
, and
Fregly
,
B. J.
,
2013
, “
Update on Grand Challenge Competition to Predict In Vivo Knee Loads
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021012
.10.1115/1.4023255
7.
Hill
,
P. F.
,
Vedi
,
V.
,
Williams
,
A.
,
Iwaki
,
H.
,
Pinskerova
,
V.
, and
Freeman
,
M. A.
,
2000
, “
Tibiofemoral Movement 2: The Loaded and Unloaded Living Knee Studied by MRI
,”
J. Bone Jt. Surg.
,
82
(
8
), pp.
1196
1198
.10.1302/0301-620X.82B8.0821196
8.
Besier
,
T. F.
,
Gold
,
G. E.
,
Delp
,
S. L.
,
Fredericson
,
M.
, and
Beaupré
,
G. S.
,
2008
, “
The Influence of Femoral Internal and External Rotation on Cartilage Stresses Within the Patellofemoral Joint
,”
J. Orthop. Res.
,
26
(
12
), pp.
1627
1635
.10.1002/jor.20663
9.
Van de Velde
,
S. K.
,
Gill
,
T. J.
,
DeFrate
,
L. E.
,
Papannagari
,
R.
, and
Li
,
G.
,
2008
, “
The Effect of Anterior Cruciate Ligament Deficiency and Reconstruction on the Patellofemoral Joint
,”
Am. J. Sports Med.
,
36
(
6
), pp.
1150
1159
.10.1177/0363546508314404
10.
Halonen
,
K. S.
,
Mononen
,
M. E.
,
Jurvelin
,
J. S.
,
Töyräs
,
J.
,
Salo
,
J.
, and
Korhonen
,
R. K.
,
2014
, “
Deformation of Articular Cartilage During Static Loading of a Knee Joint—Experimental and Finite Element Analysis
,”
J. Biomech.
,
47
(
10
), pp.
2467
2474
.10.1016/j.jbiomech.2014.04.013
11.
Defrate
,
L. E.
,
Sun
,
H.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2004
, “
In Vivo Tibiofemoral Contact Analysis Using 3D MRI-Based Knee Models
,”
J. Biomech.
,
37
(
10
), pp.
1499
1504
.10.1016/j.jbiomech.2004.01.012
12.
Li
,
G.
,
DeFrate
,
L. E.
,
Park
,
S. E.
,
Gill
,
T. J.
, and
Rubash
,
H. E.
,
2005
, “
In Vivo Articular Cartilage Contact Kinematics of the Knee: An Investigation Using Dual-Orthogonal Fluoroscopy and Magnetic Resonance Image-Based Computer Models
,”
Am. J. Sports Med.
,
33
(
1
), pp.
102
107
.10.1177/0363546504265577
13.
Liu
,
F.
,
Kozanek
,
M.
,
Hosseini
,
A.
,
Van de Velde
,
S. K.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2010
, “
In Vivo Tibiofemoral Cartilage Deformation During the Stance Phase of Gait
,”
J. Biomech.
,
43
(
4
), pp.
658
665
.10.1016/j.jbiomech.2009.10.028
14.
Tashman
,
S.
, and
Anderst
,
W.
,
2003
, “
In-Vivo Measurement of Dynamic Joint Motion Using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
238
245
.10.1115/1.1559896
15.
Guan
,
S.
,
Gray
,
H. A.
,
Schache
,
A. G.
,
Feller
,
J.
,
de Steiger
,
R.
, and
Pandy
,
M. G.
,
2017
, “
In Vivo Six-Degree-of-Freedom Knee-Joint Kinematics in Overground and Treadmill Walking Following Total Knee Arthroplasty
,”
J. Orthop. Res.
,
35
(
8
), pp.
1634
1643
.10.1002/jor.23466
16.
Yao
,
J.
,
Salo
,
A. D.
,
Lee
,
J.
, and
Lerner
,
A. L.
,
2008
, “
Sensitivity of Tibio-Menisco-Femoral Joint Contact Behavior to Variations in Knee Kinematics
,”
J. Biomech.
,
41
(
2
), pp.
390
398
.10.1016/j.jbiomech.2007.08.015
17.
Donahue
,
T. L. H.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2003
, “
How the Stiffness of Meniscal Attachments and Meniscal Material Properties Affect Tibio-Femoral Contact Pressure Computed Using a Validated Finite Element Model of the Human Knee Joint
,”
J. Biomech.
,
36
(
1
), pp.
19
34
.10.1016/S0021-9290(02)00305-6
18.
Papaioannou
,
G.
,
Nianios
,
G.
,
Mitrogiannis
,
C.
,
Fyhrie
,
D.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2008
, “
Patient-Specific Knee Joint Finite Element Model Validation With High-Accuracy Kinematics From Biplane Dynamic Roentgen Stereogrammetric Analysis
,”
J. Biomech.
,
41
(
12
), pp.
2633
2638
.10.1016/j.jbiomech.2008.06.027
19.
Mootanah
,
R.
,
Imhauser
,
C. W.
,
Reisse
,
F.
,
Carpanen
,
D.
,
Walker
,
R. W.
,
Koff
,
M. F.
,
Lenhoff
,
M. W.
,
Rozbruch
,
S. R.
,
Fragomen
,
A. T.
,
Dewan
,
Z.
,
Kirane
,
Y. M.
,
Cheah
,
K.
,
Dowell
,
J. K.
, and
Hillstrom
,
H. J.
,
2014
, “
Development and Validation of a Computational Model of the Knee Joint for the Evaluation of Surgical Treatments for Osteoarthritis
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
13
), pp.
1502
1517
.10.1080/10255842.2014.899588
20.
Shah
,
K. S.
,
Saranathan
,
A.
,
Koya
,
B.
, and
Elias
,
J. J.
,
2014
, “
Finite Element Analysis to Characterize How Varying Patellar Loading Influences Pressure Applied to Cartilage: Model Evaluation
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
14
), pp.
1509
1515
.10.1080/10255842.2014.921814
21.
Walter
,
J. P.
, and
Pandy
,
M. G.
,
2017
, “
Dynamic Simulation of Knee-Joint Loading During Gait Using Force-Feedback Control and Surrogate Contact Modelling
,”
Med. Eng. Phys.
,
48
, pp.
196
205
.10.1016/j.medengphy.2017.06.043
22.
Guan
,
S.
,
Gray
,
H. A.
,
Keynejad
,
F.
, and
Pandy
,
M. G.
,
2016
, “
Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait
,”
IEEE Trans. Med. Imaging
,
35
(
1
), pp.
326
336
.10.1109/TMI.2015.2473168
23.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.10.1016/0021-9290(91)90019-J
24.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1986
, “
Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
(
6
), pp.
425
432
.10.1016/0021-9290(86)90019-9
25.
Robinson
,
D. L.
,
Kersh
,
M. E.
,
Walsh
,
N. C.
,
Ackland
,
D. C.
,
de Steiger
,
R. N.
, and
Pandy
,
M. G.
,
2016
, “
Mechanical Properties of Normal and Osteoarthritic Human Articular Cartilage
,”
J. Mech. Behav. Biomed. Mater.
,
61
, pp.
96
109
.10.1016/j.jmbbm.2016.01.015
26.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2008
, “
Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051008
.10.1115/1.2953472
27.
Li
,
G.
,
Lopez
,
O.
, and
Rubash
,
H.
,
2001
, “
Variability of a Three-Dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis
,”
ASME J. Biomech. Eng.
,
123
(
4
), pp.
341
346
.10.1115/1.1385841
28.
Dhaher
,
Y. Y.
,
Kwon
,
T. H.
, and
Barry
,
M.
,
2010
, “
The Effect of Connective Tissue Material Uncertainties on Knee Joint Mechanics Under Isolated Loading Conditions
,”
J. Biomech.
,
43
(
16
), pp.
3118
3125
.10.1016/j.jbiomech.2010.08.005
29.
Smith
,
C. R.
,
Lenhart
,
R. L.
,
Kaiser
,
J.
,
Vignos
,
M. F.
, and
Thelen
,
D. G.
,
2016
, “
Influence of Ligament Properties on Tibiofemoral Mechanics in Walking
,”
J. Knee Surg.
,
29
(
2
), pp.
99
106
.10.1055/s-0035-1558858
30.
Keenan
,
K. E.
,
Besier
,
T. F.
,
Pauly
,
J. M.
,
Han
,
E.
,
Rosenberg
,
J.
,
Smith
,
R. L.
,
Delp
,
S. L.
,
Beaupre
,
G. S.
, and
Gold
,
G. E.
,
2011
, “
Prediction of Glycosaminoglycan Content in Human Cartilage by Age, T1rho and T2 MRI
,”
Osteoarthritis Cartilage
,
19
(
2
), pp.
171
179
.10.1016/j.joca.2010.11.009
31.
Wheaton
,
A. J.
,
Dodge
,
G. R.
,
Elliott
,
D. M.
,
Nicoll
,
S. B.
, and
Reddy
,
R.
,
2005
, “
Quantification of Cartilage Biomechanical and Biochemical Properties Via T1rho Magnetic Resonance Imaging
,”
Magn. Reson. Med.
,
54
(
5
), pp.
1087
1093
.10.1002/mrm.20678
32.
de Visser
,
S. K.
,
Bowden
,
J. C.
,
Wentrup-Byrne
,
E.
,
Rintoul
,
L.
,
Bostrom
,
T.
,
Pope
,
J. M.
, and
Momot
,
K. I.
,
2008
, “
Anisotropy of Collagen Fibre Alignment in Bovine Cartilage: Comparison of Polarised Light Microscopy and Spatially Resolved Diffusion-Tensor Measurements
,”
Osteoarthritis Cartilage
,
16
(
6
), pp.
689
697
.10.1016/j.joca.2007.09.015
33.
Sharma
,
A.
,
Leszko
,
F.
,
Komistek
,
R. D.
,
Scuderi
,
G. R.
,
Cates
,
H. E.
, and
Liu
,
F.
,
2008
, “
In Vivo Patellofemoral Forces in High Flexion Total Knee Arthroplasty
,”
J. Biomech.
,
41
(
3
), pp.
642
648
.10.1016/j.jbiomech.2007.09.027
34.
Dalstra
,
M.
, and
Huiskes
,
R.
,
1995
, “
Load Transfer Across the Pelvic Bone
,”
J. Biomech.
,
28
(
6
), pp.
715
724
.10.1016/0021-9290(94)00125-N
35.
Donahue
,
T. L. H.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
273
280
.10.1115/1.1470171
36.
Lin
,
Y.-C.
,
Walter
,
J. P.
, and
Pandy
,
M. G.
,
2018
, “
Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait
,”
Ann. Biomed. Eng.
,
46
(
8
), pp.
1216
1227
.10.1007/s10439-018-2026-6
You do not currently have access to this content.