Mechanical instability of soft tissues can either risk their normal function or alternatively trigger patterning mechanisms during growth and morphogenesis processes. Unlike standard stability analysis of linear elastic bodies, for soft tissues undergoing large deformations it is imperative to account for the nonlinearities induced by the coupling between load and surface changes at onset of instability. The related issue of boundary conditions, in context of soft tissues, has hardly been addressed in the literature, with most of available research employing dead-load conditions. This paper is concerned with the influence of imposed homogeneous rate (incremental) surface data on critical loads and associated modes in soft tissues, within the context of linear bifurcation analysis. Material behavior is modeled by compressible isotropic hyperelastic strain energy functions (SEFs), with experimentally validated material parameters for the Fung–Demiray SEF, over a range of constitutive response (including brain and liver tissues). For simplicity, we examine benchmark problems of basic spherical patterns: full sphere, spherical cavity, and thick spherical shell. Limiting the analysis to primary hydrostatic states we arrive at universal closed-form solutions, thus providing insight on the role of imposed boundary data. Influence of selected rate boundary conditions (RBCs) like dead-load and fluid-pressure (FP), coupled with constitutive parameters, on the existence and levels of bifurcation loads is compared and discussed. It is argued that the selection of the appropriate type of homogeneous RBC can have a critical effect on the level of bifurcation loads and even exclude the emergence of bifurcation instabilities.

References

1.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
,
McGrawHill-Kogakusha Ltd
,
Tokyo, Japan
, pp.
109
152
.
2.
Singer
,
J.
,
Arbocz
,
J.
, and
Weller
,
T.
,
1998
,
Buckling Experiments: Experimental Methods in Buckling of Thin-Walled Structures: Basic Concepts, Columns, Beams and Plates
, Vol.
1
, John Wiley & Sons, New York.
3.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Dover Publications
, Mineola, NY.
4.
Ben Amar
,
M.
, and
Goriely
,
A.
,
2005
, “
Growth and Instability in Elastic Tissues
,”
J. Mech. Phys. Solids
,
53
(
10
), pp.
2284
2319
.
5.
Balbi
,
V.
,
Kuhl
,
E.
, and
Ciarletta
,
P.
,
2015
, “
Morphoelastic Control of Gastro-Intestinal Organogenesis: Theoretical Predictions and Numerical Insights
,”
J. Mech. Phys. Solids
,
78
, pp.
493
510
.
6.
Vandiver
,
R. M.
,
2015
, “
Buckling Instability in Arteries
,”
J. Theor. Biol.
,
371
, pp.
1
8
.
7.
Ziegler
,
H.
,
1953
, “
Linear Elastic Stability
,”
Z. Angew. Math. Phys.
,
4
(2), pp. 89–121.
8.
Zhong-Heng
,
G.
, and
Urbanowski
,
W.
,
1963
, “
Stability of Non-Conservative Systems in the Theory of Elasticity of Finite Deformations
,”
Arch. Mech. Stosow.
,
2
(15), pp. 309–321.https://mathscinet.ams.org/mathscinet-getitem?mr=0157537
9.
Wesolowski
,
Z.
,
1964
, “
Stability of a Full Elastic Sphere Uniformly Loaded on the Surface
,”
Arch. Mech. Stosow.
,
16
(
5
), pp. 1131–1151.
10.
Hill
,
R.
,
1978
, “
Aspects of Invariance in Solid Mechanics
,”
Advances in Applied Mechanics
,
C.-S.
Yih
, ed., Vol.
18
, Academic Press, New York, pp.
1
75
.
11.
Hollander
,
Y.
, and
Durban
,
D.
,
2009
, “
Bifurcation Phenomena of a Biphasic Compressible Hyperelastic Spherical Continuum
,”
Int. J. Solids Struct.
,
46
(
24
), pp.
4252
4259
.
12.
Goriely
,
A.
, and
Ben Amar
,
M.
,
2005
, “
Differential Growth and Instability in Elastic Shells
,”
Phys. Rev. Lett.
,
94
(
19
), pp.
198103
May
.
13.
Papanastasiou
,
P.
, and
Durban
,
D.
,
1999
, “
Bifurcation of Elastoplastic Pressure-Sensitive Hollow Cylinders
,”
ASME J. Appl. Mech.
,
66
(
1
), pp.
117
123
.
14.
Hollander
,
Y.
, and
Durban
,
D.
,
2008
, “
Bifurcation of Elastoplastic Pressure-Sensitive Spheres
,”
Comput. Math. Appl.
,
55
(
2
), pp.
257
267
.
15.
deBotton
,
G.
,
Bustamante
,
R.
, and
Dorfmann
,
A.
,
2013
, “
Axisymmetric Bifurcations of Thick Spherical Shells Under Inflation and Compression
,”
Int. J. Solids Struct.
,
50
(
2
), pp.
403
413
.
16.
Haughton
,
D. M.
, and
Ogden
,
R. W.
,
1978
, “
On the Incremental Equations in Non-Linear Elasticity—Part II: Bifurcation of Pressurized Spherical Shells
,”
J. Mech. Phys. Solids
,
26
(
2
), pp.
111
138
.
17.
Lur'e
,
A. I.
,
1964
,
Three-Dimensional Problems of the Theory of Elasticity
,
Interscience Publishers
, New York.
18.
Fung
,
Y. C.
,
1967
, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol.
,
213
(
6
), pp.
1532
1544
.
19.
Demiray
,
H.
,
1972
, “
A Note on the Elasticity of Soft Biological Tissues
,”
J. Biomech.
,
5
(
3
), pp.
309
311
.
20.
Wex
,
C.
,
Arndt
,
S.
,
Stoll
,
A.
,
Bruns
,
C.
, and
Kupriyanova
,
Y.
,
2015
, “
Isotropic Incompressible Hyperelastic Models for Modelling the Mechanical Behaviour of Biological Tissues: A Review
,”
Biomed. Eng./Biomed. Tech.
,
60
(
6
), pp.
577
592
.
21.
Chui
,
C.
,
Kobayashi
,
E.
,
Chen
,
X.
,
Hisada
,
T.
, and
Sakuma
,
I.
,
2004
, “
Combined Compression and Elongation Experiments and Non-Linear Modelling of Liver Tissue for Surgical Simulation
,”
Medical Biol. Eng. Comput.
,
42
(
6
), pp.
787
798
.
22.
Roan
,
E.
, and
Vemaganti
,
K.
,
2006
, “
The Nonlinear Material Properties of Liver Tissue Determined From No-Slip Uniaxial Compression Experiments
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
450
456
.
23.
Davies
,
P. J.
,
Carter
,
F. J.
, and
Cuschieri
,
A.
,
2002
, “
Mathematical Modelling for Keyhole Surgery Simulations: A Biomechanical Model for Spleen Tissue
,”
IMA J. Appl. Math.
,
67
(
1
), pp.
41
67
.
24.
Budday
,
S.
,
Sommer
,
G.
,
Birkl
,
C.
,
Langkammer
,
C.
,
Haybaeck
,
J.
,
Kohnert
,
J.
,
Bauer
,
M.
,
Paulsen
,
F.
,
Steinmann
,
P.
,
Kuhl
,
E.
, and
Holzapfel
,
G. A.
,
2017
, “
Mechanical Characterization of Human Brain Tissue
,”
Acta Biomater.
,
48
, pp.
319
340
.
25.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2012
, “
Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
23
38
.
26.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2013
, “
Mechanical Characterization of Brain Tissue in Simple Shear at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
28
, pp.
71
85
.
27.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2014
, “
Mechanical Characterization of Brain Tissue in Tension at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
33
, pp.
43
54
.
28.
Delfino
,
A.
,
Stergiopulos
,
N.
,
Moore
,
J. E.
, Jr.
, and
Meister
,
J. J.
,
1997
, “
Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation
,”
J. Biomech.
,
30
(
8
), pp.
777
786
.
29.
Nolan
,
D. R.
, and
McGarry
,
J. P.
,
2016
, “
On the Compressibility of Arterial Tissue
,”
Ann. Biomed. Eng.
,
44
(
4
), pp.
993
1007
.
30.
Yosibash
,
Z.
,
Manor
,
I.
,
Gilad
,
I.
, and
Willentz
,
U.
,
2014
, “
Experimental Evidence of the Compressibility of Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
39
, pp.
339
354
.
31.
Yossef
,
O. E.
,
Farajian
,
M.
,
Gilad
,
I.
,
Willentz
,
U.
,
Gutman
,
N.
, and
Yosibash
,
Z.
,
2017
, “
Further Experimental Evidence of the Compressibility of Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
177
189
.
32.
Hill
,
R.
,
1957
, “
On Uniqueness and Stability in the Theory of Finite Elastic Strain
,”
J. Mech. Phys. Solids
,
5
(
4
), pp.
229
241
.
33.
Goriely
,
A.
,
Destrade
,
M.
, and
Amar
,
M. B.
,
2006
, “
Instabilities in Elastomers and in Soft Tissues
,”
Q. J. Mech. Appl. Math.
,
59
(
4
), pp.
615
630
.
34.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
35.
Moulton
,
D. E.
, and
Goriely
,
A.
,
2011
, “
Circumferential Buckling Instability of a Growing Cylindrical Tube
,”
J. Mech. Phys. Solids
,
59
(
3
), pp.
525
537
.
36.
Ciarletta
,
P.
,
Balbi
,
V.
, and
Kuhl
,
E.
,
2014
, “
Pattern Selection in Growing Tubular Tissues
,”
Phys. Rev. Lett.
,
113
, p.
248101
.
37.
Cyron
,
C. J.
,
Wilson
,
J. S.
, and
Humphrey
,
J. D.
,
2014
, “
Mechanobiological Stability: A New Paradigm to Understand the Enlargement of Aneurysms?
,”
J. R. Soc. Interface
,
11
(100), p.
0680
.
38.
Budday
,
S.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2014
, “
The Role of Mechanics During Brain Development
,”
J. Mech. Phys. Solids
,
72
, pp.
75
92
.
39.
Greenspan
,
H. P.
,
1976
, “
On the Growth and Stability of Cell Cultures and Solid Tumors
,”
J. Theor. Biol.
,
56
(
1
), pp.
229
242
.
40.
Friedman
,
A.
, and
Reitich
,
F.
,
2001
, “
Symmetry-Breaking Bifurcation of Analytic Solutions to Free Boundary Problems: An Application to a Model of Tumor Growth
,”
Trans. Am. Math. Soc.
,
353
(
4
), pp.
1587
1634
.
41.
Zimberlin
,
J. A.
,
Sanabria-DeLong
,
N.
,
Tew
,
G. N.
, and
Crosby
,
A. J.
,
2007
, “
Cavitation Rheology for Soft Materials
,”
Soft Matter
,
3
(
6
), pp.
763
767, May
.
42.
Ethier
,
C. R.
,
Johnson
,
M.
, and
Ruberti
,
J.
,
2004
, “
Ocular Biomechanics and Biotransport
,”
Annu. Rev. Biomed. Eng.
,
6
(
1
), pp.
249
273
.
43.
Bigoni
,
D.
, and
Gei
,
M.
,
2001
, “
Bifurcations of a Coated, Elastic Cylinder
,”
Int. J. Solids Struct.
,
38
(
30–31
), pp.
5117
5148
.
You do not currently have access to this content.