We present a novel framework for the fluid dynamics analysis of healthy subjects and patients affected by ascending thoracic aorta aneurysm (aTAA). Our aim is to obtain indications about the effect of a bulge on the hemodynamic environment at different enlargements. Three-dimensional (3D) surface models defined from healthy subjects and patients with aTAA, selected for surgical repair, were generated. A representative shape model for both healthy and pathological groups has been identified. A morphing technique based on radial basis functions (RBF) was applied to mold the shape relative to healthy patient into the representative shape of aTAA dataset to enable the parametric simulation of the aTAA formation. Computational fluid dynamics (CFD) simulations were performed by means of a finite volume solver using the mean boundary conditions obtained from three-dimensional (PC-MRI) acquisition. Blood flow helicity and flow descriptors were assessed for all the investigated models. The feasibility of the proposed integrated approach pertaining the coupling between an RBF morphing technique and CFD simulation for aTAA was demonstrated. Significant hemodynamic changes appear at the 60% of the bulge progression. An impingement of the flow toward the bulge was observed by analyzing the normalized flow eccentricity (NFE) index.

References

1.
Mokashi
,
S. A.
, and
Svensson
,
L. G.
,
2017
, “
Guidelines for the Management of Thoracic Aortic Disease in 2017
,”
Gen. Thorac. Cardiovasc. Surg.
, (epub).
2.
Johansson
,
G.
,
Markström
,
U.
, and
Swedenborg
,
J.
,
1995
, “
Ruptured Thoracic Aortic Aneurysms: A Study of Incidence and Mortality Rates
,”
J. Vasc. Surg.
,
21
(
6
), pp.
985
988
.
3.
Elefteriades
,
J. A.
,
2002
, “
Natural History of Thoracic Aortic Aneurysms: Indications for Surgery, and Surgical Versus Nonsurgical Risks
,”
Ann. Thorac. Surg.
,
74
(
5
), pp.
S1877
1880
.
4.
Kuzmik
,
G. A.
,
Sang
,
A. X.
, and
Elefteriades
,
J. A.
,
2012
, “
Natural History of Thoracic Aortic Aneurysms
,”
J. Vasc. Surg.
,
56
(
2
), pp.
565
571
.
5.
Friedman
,
M. H.
,
Hutchins
,
G. M.
,
Bargeron
,
C. B.
,
Deters
,
O. J.
, and
Mark
,
F. F.
,
1981
, “
Correlation Between Intimal Thickness and Fluid Shear in Human Arteries
,”
Atherosclerosis
,
39
(
3
), pp.
425
436
.
6.
Humphrey
,
J. D.
, and
Taylor
,
C. A.
,
2008
, “
Intracranial and Abdominal Aortic Aneurysms: Similarities, Differences, and Need for a New Class of Computational Models
,”
Annu. Rev. Biomed. Eng.
,
10
(
1
), pp.
221
246
.
7.
Chien
,
S.
,
Li
,
S.
, and
Shyy
,
Y. J.
,
1998
, “
Effects of Mechanical Forces on Signal Transduction and Gene Expression in Endothelial Cells
,”
Hypertension (Dallas Texas)
,
31
(
1
), pp.
162
169
.
8.
Davies
,
P. F.
,
1995
, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
,
75
(
3
), pp.
519
560
.
9.
Langille
,
B. L.
,
1996
, “
Arterial Remodeling: Relation to Hemodynamics
,”
Can. J. Physiol. Pharmacol.
,
74
(
7
), pp.
834
841
.
10.
Humphrey
,
J. D.
,
2008
, “
Mechanisms of Arterial Remodeling in Hypertension: Coupled Roles of Wall Shear and Intramural Stress
,”
Hypertension
,
52
(
2
), pp.
195
200
.
11.
Cyron
,
C. J.
, and
Humphrey
,
J. D.
,
2017
, “
Growth and Remodeling of Load-Bearing Biological Soft Tissues
,”
Meccanica
,
52
(
3
), pp.
645
664
.
12.
Cyron
,
C. J.
,
Aydin
,
R. C.
, and
Humphrey
,
J. D.
,
2016
, “
A Homogenized Constrained Mixture (and Mechanical Analog) Model for Growth and Remodeling of Soft Tissue
,”
Biomech. Model. Mechanobiol.
,
15
(
6
), pp.
1389
1403
.
13.
Braeu
,
F. A.
,
Seitz
,
A.
,
Aydin
,
R. C.
, and
Cyron
,
C. J.
,
2017
, “
Homogenized Constrained Mixture Models for Anisotropic Volumetric Growth and Remodeling
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
889
906
.
14.
Taylor
,
C. A.
, and
Steinman
,
D. A.
,
2010
, “
Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
1188
1203
.
15.
Antiga
,
L.
,
Ene-Iordache
,
B.
, and
Remuzzi
,
A.
,
2003
, “
Computational Geometry for Patient-Specific Reconstruction and Meshing of Blood Vessels From MR and CT Angiography
,”
IEEE Trans. Med. Imaging
,
22
(
5
), pp.
674
684
.
16.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
,
2008
, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1097
1112
.
17.
Bekkers
,
E. J.
, and
Taylor
,
C. A.
,
2008
, “
Multiscale Vascular Surface Model Generation From Medical Imaging Data Using Hierarchical Features
,”
IEEE Trans. Med. Imaging
,
27
(
3
), pp.
331
341
.
18.
Celi
,
S.
,
Martini
,
N.
,
Pastormerlo
,
L. E.
,
Positano
,
V.
, and
Berti
,
S.
,
2017
, “
Multimodality Imaging for Interventional Cardiology
,”
Curr. Pharm. Des.
,
23
(
22
), pp.
3285
3300
.
19.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Cadioli
,
M.
,
Esposito
,
A.
,
De Cobelli
,
F.
,
Del Maschio
,
A.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2009
, “
In Vivo Quantification of Helical Blood Flow in Human Aorta by Time-Resolved Three-Dimensional Cine Phase Contrast Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
37
(
3
), pp.
516
531
.
20.
Stankovic
,
Z.
,
Allen
,
B. D.
,
Garcia
,
J.
,
Jarvis
,
K. B.
, and
Markl
,
M.
,
2014
, “
4D Flow Imaging With MRI
,”
Cardiovasc. Diagn. Ther.
,
4
(
2
), pp.
173
192
.
21.
Bozzi
,
S.
,
Morbiducci
,
U.
,
Gallo
,
D.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Bignardi
,
C.
, and
Passoni
,
G.
,
2017
, “
Uncertainty Propagation of Phase Contrast-MRI Derived Inlet Boundary Conditions in Computational Hemodynamics Models of Thoracic Aorta
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
10
), pp.
1104
1112
.
22.
Geisbüsch
,
S.
,
Stefanovic
,
A.
,
Schray
,
D.
,
Oyfe
,
I.
,
Lin
,
H.-M.
,
Di Luozzo
,
G.
, and
Griepp
,
R. B.
,
2014
, “
A Prospective Study of Growth and Rupture Risk of Small-to-Moderate Size Ascending Aortic Aneurysms
,”
J. Thorac. Cardiovasc. Surg.
,
147
(
1
), pp.
68
74
.
23.
Oladokun
,
D.
,
Patterson
,
B. O.
,
Sobocinski
,
J.
,
Karthikesalingam
,
A.
,
Loftus
,
I.
,
Thompson
,
M. M.
, and
Holt
,
P. J.
,
2016
, “
Systematic Review of the Growth Rates and Influencing Factors in Thoracic Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
,
51
(
5
), pp.
674
681
.
24.
Numata
,
S.
,
Itatani
,
K.
,
Kanda
,
K.
,
Doi
,
K.
,
Yamazaki
,
S.
,
Morimoto
,
K.
,
Manabe
,
K.
,
Ikemoto
,
K.
, and
Yaku
,
H.
,
2016
, “
Blood Flow Analysis of the Aortic Arch Using Computational Fluid Dynamics
,”
Eur. J. Cardio-Thorac. Surg.
,
49
(
6
), pp.
1578
1585
.
25.
Benim
,
A. C.
,
Nahavandi
,
A.
,
Assmann
,
A.
,
Schubert
,
D.
,
Feindt
,
P.
, and
Suh
,
S. H.
,
2011
, “
Simulation of Blood Flow in Human Aorta With Emphasis on Outlet Boundary Conditions
,”
Appl. Math. Modell.
,
35
(
7
), pp.
3175
3188
.
26.
Kimura
,
N.
,
Nakamura
,
M.
,
Komiya
,
K.
,
Nishi
,
S.
,
Yamaguchi
,
A.
,
Tanaka
,
O.
,
Misawa
,
Y.
,
Adachi
,
H.
, and
Kawahito
,
K.
,
2017
, “
Patient-Specific Assessment of Hemodynamics by Computational Fluid Dynamics in Patients With Bicuspid Aortopathy
,”
J. Thorac. Cardiovasc. Surg.
,
153
(
4
), pp.
S52
S62.
27.
Youssefi
,
P.
,
Gomez
,
A.
,
He
,
T.
,
Anderson
,
L.
,
Bunce
,
N.
,
Sharma
,
R.
,
Figueroa
,
C. A.
, and
Jahangiri
,
M.
,
2017
, “
Patient-Specific Computational Fluid Dynamics-Assessment of Aortic Hemodynamics in a Spectrum of Aortic Valve Pathologies
,”
J. Thorac. Cardiovasc. Surg.
,
153
(
1
), pp.
8
20.
28.
Duan
,
Y.
,
2008
, “
A Note on the Meshless Method Using Radial Basis Functions
,”
Comput. Math. Appl.
,
55
(
1
), pp.
66
75
.
29.
Biancolini, M., 2012, “
Mesh Morphing and Smoothing by Means of Radial Basis Functions (RBF): A practical example using Fluent and RBF-Morph
,”
Handbook of Research on Computational Science and Engineering: Theory and Practice
, J. Leng, W. Sharrock, eds., IGI Global, Hershey, PA, pp. 347–380.
30.
Cella
,
U.
,
Groth
,
C.
, and
Biancolini
,
M. E.
,
2017
, “
Geometric Parameterization Strategies for Shape Optimization Using RBF Mesh Morphing
,”
Advances on Mechanics, Design Engineering and Manufacturing
,
Springer
,
Cham, Switzerland
, pp.
537
545
.
31.
Biancolini
,
M. E.
,
2018
,
Fast Radial Basis Functions for Engineering Applications
,
Springer International Publishing
, Basel, Switzerland.
32.
Turini, G., Condino, S., Sinceri, S., Tamadon, I., Celi, S., Quaglia, C., Murzi, M., Soldani, G., Menciassi, A., Ferrari, V., and Ferrari, M.,
2017
, “
Patient Specific Virtual and Physical Simulation Platform for Surgical Robot Movability Evaluation in Single-Access Robot-Assisted Minimally-Invasive Cardiothoracic Surgery
,” Augmented Reality, Virtual Reality, and Computer Graphics: Fourth International Conference, AVR 2017, Part II,
L. T.
De Paolis
,
P.
,
Bourdot
, and
A.
,
Mongelli
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
211
220
.
33.
Antiga
,
L.
, and
Steinman
,
D. A.
,
2004
, “
Robust and Objective Decomposition and Mapping of Bifurcating Vessels
,”
IEEE Trans. Med. Imaging
,
23
(
6
), pp.
704
713
.
34.
Brown
,
A. G.
,
Shi
,
Y.
,
Marzo
,
A.
,
Staicu
,
C.
,
Valverde
,
I.
,
Beerbaum
,
P.
,
Lawford
,
P. V.
, and
Hose
,
D. R.
,
2012
, “
Accuracy Vs. Computational Time: Translating Aortic Simulations to the Clinic
,”
J. Biomech.
,
45
(
3
), pp.
516
523
.
35.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.
36.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arterioscler., Thromb., Vasc. Biol.
,
5
(
3
), pp.
293
302
.
37.
Gallo
,
D.
,
Isu
,
G.
,
Massai
,
D.
,
Pennella
,
F.
,
Deriu
,
M. A.
,
Ponzini
,
R.
,
Bignardi
,
C.
,
Audenino
,
A.
,
Rizzo
,
G.
, and
Morbiducci
,
U.
,
2014
, “
A Survey of Quantitative Descriptors of Arterial Flows
,”
Visualization and Simulation of Complex Flows in Biomedical Engineering
,
Springer
,
Dordrecht, The Netherlands
, pp.
1
24
.
38.
Shtilman
,
L.
,
Levich
,
E.
,
Orszag
,
S. A.
,
Pelz
,
R. B.
, and
Tsinober
,
A.
,
1985
, “
On the Role of Helicity in Complex Fluid Flows
,”
Phys. Lett. A
,
113
(
1
), pp.
32
37
.
39.
Sigovan
,
M.
,
Hope
,
M. D.
,
Dyverfeldt
,
P.
, and
Saloner
,
D.
,
2011
, “
Comparison of Four-Dimensional Flow Parameters for Quantification of Flow Eccentricity in the Ascending Aorta
,”
J. Magn. Reson. Imaging JMRI
,
34
(
5
), pp.
1226
1230
.
40.
Ahmad
,
T.
,
Plee
,
S. L.
, and
Myers
,
J. P.
, 2013,
ANSYS Fluent Theory Guide
, Ansys Inc., Canonsburg, PA.
41.
Elefteriades
,
J. A.
, and
Farkas
,
E. A.
,
2010
, “
Thoracic Aortic Aneurysm: Clinically Pertinent Controversies and Uncertainties
,”
J. Am. Coll. Cardiol.
,
55
(
9
), pp.
841
857
.
42.
Biancolini
,
M. E.
,
Ponzini
,
R.
,
Antiga
,
L.
, and
Morbiducci
,
U.
,
2012
, “
A New Workflow for Patient Specific Image-Based Hemodynamics: Parametric Study of the Carotid Bifurcation
,”
Computational Modelling of Objects Represented in Images III: Fundamentals, Methods and Applications
,
CRC Press
,
Rome, Italy
.
43.
Doi
,
K.
,
2007
, “
Computer-Aided Diagnosis in Medical Imaging: Historical Review, Current Status and Future Potential
,”
Comput. Med. Imaging Graphics
,
31
(
4–5
), pp.
198
211
.
44.
van Ginneken
,
B.
,
Schaefer-Prokop
,
C. M.
, and
Prokop
,
M.
,
2011
, “
Computer-Aided Diagnosis: How to Move From the Laboratory to the Clinic
,”
Radiology
,
261
(
3
), pp.
719
732
.
45.
Suzuki
,
K.
,
2012
, “
A Review of Computer-Aided Diagnosis in Thoracic and Colonic Imaging
,”
Quant. Imaging Med. Surg.
,
2
(
3
), pp.
163
176
.
46.
Celi
,
S.
, and
Berti
,
S.
,
2014
, “
Three-Dimensional Sensitivity Assessment of Thoracic Aortic Aneurysm Wall Stress: A Probabilistic Finite-Element Study
,”
Eur. J. Cardio-Thorac. Surg.
,
45
(
3
), pp.
467
475
.
47.
Celi
,
S.
, and
Berti
,
S.
,
2012
, “
Biomechanics and FE Modelling of Aneurysm: Review and Advances in Computational Models
,”
Aneurysm
,
Y.
Murai
, ed., IntechOpen, London, pp.
3
26.
48.
Liljeqvist
,
M. L.
,
Hultgren
,
R.
,
Gasser
,
T. C.
, and
Roy
,
J.
,
2016
, “
Volume Growth of Abdominal Aortic Aneurysms Correlates With Baseline Volume and Increasing Finite Element Analysis-Derived Rupture Risk
,”
J. Vasc. Surg.
,
63
(
6
), pp.
1434
1442.
49.
Liu
,
X.
,
Pu
,
F.
,
Fan
,
Y.
,
Deng
,
X.
,
Li
,
D.
, and
Li
,
S.
,
2009
, “
A Numerical Study on the Flow of Blood and the Transport of LDL in the Human Aorta: The Physiological Significance of the Helical Flow in the Aortic Arch
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
297
(
1
), pp.
H163
170
.
50.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Cadioli
,
M.
,
Esposito
,
A.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2011
, “
Mechanistic Insight Into the Physiological Relevance of Helical Blood Flow in the Human Aorta: An In Vivo Study
,”
Biomech. Model. Mechanobiol.
,
10
(
3
), pp.
339
355
.
51.
Weigang
,
E.
,
Kari
,
F. A.
,
Beyersdorf
,
F.
,
Luehr
,
M.
,
Etz
,
C. D.
,
Frydrychowicz
,
A.
,
Harloff
,
A.
, and
Markl
,
M.
,
2008
, “
Flow-Sensitive Four-Dimensional Magnetic Resonance Imaging: Flow Patterns in Ascending Aortic Aneurysms
,”
Eur. J. Cardiothorac. Surg.
,
34
(
1
), pp.
11
16
.
52.
Frydrychowicz
,
A.
,
Arnold
,
R.
,
Hirtler
,
D.
,
Schlensak
,
C.
,
Stalder
,
A. F.
,
Hennig
,
J.
,
Langer
,
M.
, and
Markl
,
M.
,
2008
, “
Multidirectional Flow Analysis by Cardiovascular Magnetic Resonance in Aneurysm Development Following Repair of Aortic Coarctation
,”
J. Cardiovasc. Magn. Reson.
,
10
(
1
), p.
30
.
53.
Kilner
,
P. J.
,
Yang
,
G. Z.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
, and
Longmore
,
D. B.
,
1993
, “
Helical and Retrograde Secondary Flow Patterns in the Aortic Arch Studied by Three-Directional Magnetic Resonance Velocity Mapping
,”
Circulation
,
88
(
5
), pp.
2235
2247
.
54.
Pasta
,
S.
,
Rinaudo
,
A.
,
Luca
,
A.
,
Pilato
,
M.
,
Scardulla
,
C.
,
Gleason
,
T. G.
, and
Vorp
,
D. A.
,
2013
, “
Difference in Hemodynamic and Wall Stress of Ascending Thoracic Aortic Aneurysms With Bicuspid and Tricuspid Aortic Valve
,”
J. Biomech.
,
46
(
10
), pp.
1729
1738
.
55.
Boccadifuoco
,
A.
,
Mariotti
,
A.
,
Celi
,
S.
,
Martini
,
N.
, and
Salvetti
,
M. V.
,
2016
, “
Uncertainty Quantification in Numerical Simulations of the Flow in Thoracic Aortic Aneurysms
,” Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens, NTUA, Athens, Greece, pp.
6226
6249
.
56.
Boccadifuoco
,
A.
,
Mariotti
,
A.
,
Celi
,
S.
,
Martini
,
N.
, and
Salvetti
,
M. V.
,
2018
, “
Impact of Uncertainties in Outflow Boundary Conditions on the Predictions of Hemodynamic Simulations of Ascending Thoracic Aortic Aneurysms
,”
Comput. Fluids
,
165
, pp.
96
115
.
57.
Bianchi
,
D.
,
Monaldo
,
E.
,
Gizzi
,
A.
,
Marino
,
M.
,
Filippi
,
S.
, and
Vairo
,
G.
,
2017
, “
A FSI Computational Framework for Vascular Physiopathology: A Novel Flow-Tissue Multiscale Strategy
,”
Med. Eng. Phys.
,
47
, pp.
25
37
.
58.
Formaggia
,
L.
,
Quarteroni
,
A.
, and
Veneziani
,
A.
,
2009
,
Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System
,
Springer-Verlag
,
Mailand, Italy
.
You do not currently have access to this content.