The implant stability and biomechanical response of periprosthetic bone in acetabulum around total hip joint replacement (THR) devices depend on a host of parameters, including design of articulating materials, gait cycle and subject parameters. In this study, the impact of shell design (conventional, finned, spiked, and combined design) and liner material on the biomechanical response of periprosthetic bone has been analyzed using finite element (FE) method. Two different liner materials: high density polyethylene–20% hydroxyapatite–20% alumina (HDPE–20%HA–20%Al2O3) and highly cross-linked ultrahigh molecular weight polyethylene (HC-UHMWPE) were used. The subject parameters included bone condition and bodyweight. Physiologically relevant load cases of a gait cycle were considered. The deviation of mechanical condition of the periprosthetic bone due to implantation was least for the finned shell design. No significant deviation was observed at the bone region adjacent to the spikes and the fins. This study recommends the use of the finned design, particularly for weaker bone conditions. For stronger bones, the combined design may also be recommended for higher stability. The use of HC-UHMWPE liner was found to be better for convensional shell design. However, similar biomechanical response was captured in our FE analysis for both the liner materials in case of other shell designs. Overall, the study establishes the biomechanical response of periprosthetic bone in the acetabular with preclinically tested liner materials together with new shell design for different subject conditions.

References

1.
Simoes
,
J.
,
Marques
,
A.
, and
Jeronimidis
,
G.
,
2000
, “
Design of a Controlled-Stiffness Composite Proximal Femoral Prosthesis
,”
Compos. Sci. Technol.
,
60
(
4
), pp.
559
567
.
2.
Cilingir
,
A. C.
,
2010
, “
Finite Element Analysis of the Contact Mechanics of Ceramic-on-Ceramic Hip Resurfacing Prostheses
,”
J. Bionic Eng.
,
7
(
3
), pp.
244
253
.
3.
Basu, B., 2017,
Biomaterials Science and Tissue Engineering: Principles and Methods
, Cambridge University Press, Cambridge, UK.
4.
Basu, B., and Ghosh, S., 2007,
Biomaterials for Musculoskeletal Regeneration: Applications; Concepts
(Indian Institute of Metals Series), Springer Nature, Berlin.
5.
Essner
,
A.
,
Sutton
,
K.
, and
Wang
,
A.
,
2005
, “
Hip Simulator Wear Comparison of Metal-on-Metal, Ceramic-on-Ceramic and Crosslinked UHMWPE Bearings
,”
Wear
,
259
(
7–12
), pp.
992
995
.
6.
Warashina
,
H.
,
Sakano
,
S.
,
Kitamura
,
S.
,
Yamauchi
,
K.-I.
,
Yamaguchi
,
J.
,
Ishiguro
,
N.
, and
Hasegawa
,
Y.
,
2003
, “
Biological Reaction to Alumina, Zirconia, Titanium and Polyethylene Particles Implanted Onto Murine Calvaria
,”
Biomaterials
,
24
(
21
), pp.
3655
3661
.
7.
Hallab
,
N. J.
, and
Jacobs
,
J. J.
,
2009
, “
Biologic Effects of Implant Debris
,”
Bull. NYU Hosp. Jt. Dis.
,
67
(
2
), p.
182
.https://pdfs.semanticscholar.org/f426/98bc0866ee6a7ec4fe3e3a128ab1fde6a414.pdf
8.
Schmalzried
,
T. P.
,
Kwong
,
L. M.
,
Jasty
,
M.
,
Sedlacek
,
R. C.
,
Haire
,
T. C.
,
O'connor
,
D. O.
,
Bragdon
,
C. R.
,
Kabo
,
J. M.
,
Malcolm
,
A. J.
, and
Harris
,
W. H.
,
1992
, “
The Mechanism of Loosening of Cemented Acetabular Components in Total Hip Arthroplasty: Analysis of Specimens Retrieved at Autopsy
,”
Clin. Orthop. Relat. Res.
,
274
, pp.
60
78
.
9.
Willert
,
H.-G.
,
Bertram
,
H.
, and
Buchhorn
,
G. H.
,
1990
, “
Osteolysis in Alloarthroplasty of the Hip: The Role of Ultra-High Molecular Weight Polyethylene Wear Particles
,”
Clin. Orthop. Relat. Res.
,
258
, pp.
95
107
.
10.
Muratoglu, O., K., Bragdon, C. R., and O'™Connor, D. O., 2001, “
A Novel Method of Crosslinking UHMWPE to Improve Wear, Reduce Oxidation and Retain Mechanical Properties
,”
Arthroplasty
,
16
(2), pp. 1–12.
11.
Muratoglu
,
O. K.
,
Bragdon
,
C. R.
,
O'Connor
,
D. O.
,
Jasty
,
M.
,
Harris
,
W. H.
,
Gul
,
R.
, and
McGarry
,
F.
,
1999
, “
Unified Wear Model for Highly Crosslinked Ultra-High Molecular Weight Polyethylenes (UHMWPE)
,”
Biomaterials
,
20
(
16
), pp.
1463
1470
.
12.
Muratoglu
,
O. K.
,
Bragdon
,
C. R.
,
O'Connor
,
D.
,
Perinchief
,
R. S.
,
Estok
,
D. M.
,
Jasty
,
M.
, and
Harris
,
W. H.
,
2001
, “
Larger Diameter Femoral Heads Used in Conjunction With a Highly Cross-Linked Ultra–High Molecular Weight Polyethylene: A New Concept
,”
J. Arthroplasty
,
16
(
8
), pp.
24
30
.
13.
Nath
,
S.
,
Bodhak
,
S.
, and
Basu
,
B.
,
2009
, “
HDPE–Al2O3–HAp Composites for Biomedical Applications: Processing and Characterizations
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
88
(
1
), pp.
1
11
.
14.
Bodhak
,
S.
,
Nath
,
S.
, and
Basu
,
B.
,
2009
, “
Friction and Wear Properties of Novel HDPE–Hap–Al2O3 Biocomposites Against Alumina Counterface
,”
J. Biomater. Appl.
,
23
(
5
), pp.
407
433
.
15.
Saha
,
N.
,
Dubey
,
A. K.
, and
Basu
,
B.
,
2012
, “
Cellular Proliferation, Cellular Viability, and Biocompatibility of HA–ZnO Composites
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
100
(
1
), pp.
256
264
.
16.
Saha
,
N.
,
Keskinbora
,
K.
,
Suvaci
,
E.
, and
Basu
,
B.
,
2010
, “
Sintering, Microstructure, Mechanical, and Antimicrobial Properties of HAp–ZnO Biocomposites
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
95
(
2
), pp.
430
440
.
17.
Tripathi
,
G.
,
Gough
,
J. E.
,
Dinda
,
A.
, and
Basu
,
B.
,
2013
, “
In Vitro Cytotoxicity and In Vivo Osseointergration Properties of Compression‐Molded HDPE–HA–Al2O3 Hybrid Biocomposites
,”
J. Biomed. Mater. Res. Part A
,
101
(
6
), pp.
1539
1549
.
18.
Tripathi
,
G.
, and
Basu
,
B.
,
2014
, “
In Vitro Osteogenic Cell Proliferation, Mineralization, and In Vivo Osseointegration of Injection Molded High-Density Polyethylene-Based Hybrid Composites in Rabbit Animal Model
,”
J. Biomater. Appl.
,
29
(
1
), pp.
142
157
.
19.
Tripathi
,
G.
,
Dubey
,
A. K.
, and
Basu
,
B.
,
2012
, “
Evaluation of Physico‐Mechanical Properties and In Vitro Biocompatibility of Compression Molded HDPE Based Biocomposites With HA/Al2O3 Ceramic Fillers and Titanate Coupling Agents
,”
J. Appl. Polym. Sci.
,
124
(
4
), pp.
3051
3063
.
20.
Nath
,
S.
,
Bodhak
,
S.
, and
Basu
,
B.
,
2007
, “
Tribological Investigation of Novel HDPE‐HAp‐Al2O3 Hybrid Biocomposites against Steel Under Dry and Simulated Body Fluid Condition
,”
J. Biomed. Mater. Res. Part A
,
83
(
1
), pp.
191
208
.
21.
Moskal
,
J. T.
,
Danisa
,
O. A.
, and
Shaffrey
,
C. I.
,
1997
, “
Isolated Revision Acetabuloplasty Using a Porous-Coated Cementless Acetabular Component Without Removal of a Well-Fixed Femoral Component: A 3-to 9-Year Follow-Up Study
,”
J. Arthroplasty
,
12
(
7
), pp.
719
727
.
22.
Paprosky
,
W. G.
,
Perona
,
P. G.
, and
Lawrence
,
J. M.
,
1994
, “
Acetabular Defect Classification and Surgical Reconstruction in Revision Arthroplasty: A 6-Year Follow-Up Evaluation
,”
J. Arthroplasty
,
9
(
1
), pp.
33
44
.
23.
Silverton
,
C. D.
,
Rosenberg
,
A. G.
,
Sheinkop
,
M. B.
,
Kull
,
L. R.
, and
Galante
,
J. O.
,
1996
, “
Revision of the Acetabular Component Without Cement after Total Hip Arthroplasty. A Follow-Up Note regarding Results at Seven to Eleven Years
,”
JBJS
,
78
(
9
), pp.
1366
1370
.
24.
Tanzer
,
M.
,
Drucker
,
D.
,
Jasty
,
M.
,
McDonald
,
M.
, and
Harris
,
W.
,
1992
, “
Revision of the Acetabular Component With an Uncemented Harris-Galante Porous-Coated Prosthesis
,”
JBJS
,
74
(
7
), pp.
987
994
.
25.
Scholes
,
S.
, and
Unsworth
,
A.
,
2007
, “
The Wear Properties of CFR-PEEK-OPTIMA Articulating against Ceramic Assessed on a Multidirectional Pin-on-Plate Machine
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
221
(
3
), pp.
281
289
.
26.
Scholes
,
S.
,
Inman
,
I.
,
Unsworth
,
A.
, and
Jones
,
E.
,
2008
, “
Tribological Assessment of a Flexible Carbon-Fibre-Reinforced Poly (Ether–Ether–Ketone) Acetabular Cup Articulating against an Alumina Femoral Head
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
222
(
3
), pp.
273
283
.
27.
Ghosh
,
R.
, and
Gupta
,
S.
,
2014
, “
Bone Remodelling around Cementless Composite Acetabular Components: The Effects of Implant Geometry and Implant–Bone Interfacial Conditions
,”
J. Mech. Behav. Biomed. Mater.
,
32
, pp.
257
269
.
28.
Manley
,
M. T.
, and
Sutton
,
K.
,
2008
, “
Bearings of the Future for Total Hip Arthroplasty
,”
J. Arthroplasty
,
23
(
7 Suppl
.), pp.
47
50
.
29.
Field
,
R. E.
,
Rajakulendran
,
K.
,
Eswaramoorthy
,
V. K.
, and
Rushton
,
N.
,
2012
, “
Three-Year Prospective Clinical and Radiological Results of a New Flexible Horseshoe Acetabular Cup
,”
Hip Int.
,
22
(
6
), pp.
598
606
.
30.
Ma
,
W.
,
Zhang
,
X.
,
Wang
,
J.
,
Zhang
,
Q.
,
Chen
,
W.
, and
Zhang
,
Y.
,
2013
, “
Optimized Design for a Novel Acetabular Component With Three Wings. A Study of Finite Element Analysis
,”
J. Surg. Res.
,
179
(
1
), pp.
78
86
.
31.
Ito
,
H.
,
Matsuno
,
T.
,
Aoki
,
Y.
, and
Minami
,
A.
,
2003
, “
Acetabular Components Without Bulk Bone Graft in Revision Surgery: A 5-to 13-Year Follow-Up Study
,”
J. Arthroplasty
,
18
(
2
), pp.
134
139
.
32.
Hendricks
,
K. J.
, and
Harris
,
W. H.
,
2006
, “
Revision of Failed Acetabular Components With Use of so-Called Jumbo Noncemented Components: A Concise Follow-Up of a Previous Report
,”
JBJS
,
88
(
3
), pp.
559
563
.
33.
Patel
,
J.
,
Masonis
,
J.
,
Bourne
,
R.
, and
Rorabeck
,
C.
,
2003
, “
The Fate of Cementless Jumbo Cups in Revision Hip Arthroplasty
,”
J. Arthroplasty
,
18
(
2
), pp.
129
133
.
34.
Winter
,
E.
,
Piert
,
M.
,
Volkmann
,
R.
,
Maurer
,
F.
,
Eingartner
,
C.
,
Weise
,
K.
, and
Weller
,
S.
,
2001
, “
Allogeneic Cancellous Bone Graft and a Burch–Schneider Ring for Acetabular Reconstruction in Revision Hip Arthroplasty
,”
JBJS
,
83
(
6
), pp.
862
867
.
35.
Kawanabe
,
K.
,
Akiyama
,
H.
,
Onishi
,
E.
, and
Nakamura
,
T.
,
2007
, “
Revision Total Hip Replacement Using the Kerboull Acetabular Reinforcement Device With Morsellised or Bulk Graft
,”
Bone Jt. J.
,
89
(
1
), pp.
26
31
.
36.
Abeyta
,
P. N.
,
Namba
,
R. S.
,
Janku
,
G. V.
,
Murray
,
W. R.
, and
Kim
,
H. T.
,
2008
, “
Reconstruction of Major Segmental Acetabular Defects With an Oblong-Shaped Cementless Prosthesis: A Long-Term Outcomes Study
,”
J. Arthroplasty
,
23
(
2
), pp.
247
253
.
37.
Berry
,
D. J.
,
Sutherland
,
C. J.
,
Trousdale
,
R. T.
,
Colwell
,
C. W.
, Jr.
,
Chandler
,
H. P.
,
Ayres
,
D.
, and
Yashar
,
A. A.
,
2000
, “
Bilobed Oblong Porous Coated Acetabular Components in Revision Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
371
, pp.
154
160
.
38.
Aldinger
,
P. R.
,
Thomsen
,
M.
,
Lukoschek
,
M.
,
Mau
,
H.
,
Ewerbeck
,
V.
, and
Breusch
,
S. J.
,
2004
, “
Long-Term Fate of Uncemented, Threaded Acetabular Components With Smooth Surface Treatment: Minimum 10-Year Follow-Up of Two Different Designs
,”
Arch. Orthop. Trauma Surg.
,
124
(
7
), pp.
469
475
.
39.
Baleani
,
M.
,
Fognani
,
R.
, and
Toni
,
A.
,
2001
, “
Initial Stability of a Cementless Acetabular Cup Design: Experimental Investigation on the Effect of Adding Fins to the Rim of the Cup
,”
Artif. Organs
,
25
(
8
), pp.
664
669
.
40.
Perona
,
P. G.
,
Lawrence
,
J.
,
Paprosky
,
W. G.
,
Patwardhan
,
A. G.
, and
Sartori
,
M.
,
1992
, “
Acetabular Micromotion as a Measure of Initial Implant Stability in Primary Hip Arthroplasty: An In Vitro Comparison of Different Methods of Intial Acetabular Component Fixation
,”
J. Arthroplasty
,
7
(
4
), pp.
537
547
.
41.
Korhonen
,
R. K.
,
Koistinen
,
A.
,
Konttinen
,
Y. T.
,
Santavirta
,
S. S.
, and
Lappalainen
,
R.
,
2005
, “
The Effect of Geometry and Abduction Angle on the Stresses in Cemented UHMWPE Acetabular Cups–Finite Element Simulations and Experimental Tests
,”
Biomed. Eng. Online
,
4
(
1
), p.
32
.
42.
Kennedy
,
J.
,
Rogers
,
W.
,
Soffe
,
K.
,
Sullivan
,
R.
,
Griffen
,
D.
, and
Sheehan
,
L.
,
1998
, “
Effect of Acetabular Component Orientation on Recurrent Dislocation, Pelvic Osteolysis, Polyethylene Wear, and Component Migration
,”
J. Arthroplasty
,
13
(
5
), pp.
530
534
.
43.
Small
,
S. R.
,
Berend
,
M. E.
,
Howard
,
L. A.
,
Tunç
,
D.
,
Buckley
,
C. A.
, and
Ritter
,
M. A.
,
2013
, “
Acetabular Cup Stiffness and Implant Orientation Change Acetabular Loading Patterns
,”
J. Arthroplasty
,
28
(
2
), pp.
359
367
.
44.
Hirakawa
,
K.
,
Mitsugi
,
N.
,
Koshino
,
T.
,
Saito
,
T.
,
Hirasawa
,
Y.
, and
Kubo
,
T.
,
2001
, “
Effect of Acetabular Cup Position and Orientation in Cemented Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
388
, pp.
135
142
.
45.
Craiovan
,
B.
,
Renkawitz
,
T.
,
Weber
,
M.
,
Grifka
,
J.
,
Nolte
,
L.
, and
Zheng
,
G.
,
2014
, “
Is the Acetabular Cup Orientation after Total Hip Arthroplasty on a Two Dimension or Three Dimension Model Accurate?
,”
Int. Orthop.
,
38
(
10
), pp.
2009
2015
.
46.
Van Houcke
,
J.
,
Khanduja
,
V.
,
Pattyn
,
C.
, and
Audenaert
,
E.
,
2017
, “
The History of Biomechanics in Total Hip Arthroplasty
,”
Indian J. Orthop.
,
51
(
4
), p.
359
.
47.
Little
,
N. J.
,
Busch
,
C. A.
,
Gallagher
,
J. A.
,
Rorabeck
,
C. H.
, and
Bourne
,
R. B.
,
2009
, “
Acetabular Polyethylene Wear and Acetabular Inclination and Femoral Offset
,”
Clin. Orthop. Relat. Res.
,
467
(
11
), p.
2895
.
48.
Biedermann
,
R.
,
Tonin
,
A.
,
Krismer
,
M.
,
Rachbauer
,
F.
,
Eibl
,
G.
, and
Stöckl
,
B.
,
2005
, “
Reducing the Risk of Dislocation After Total Hip Arthroplasty
,”
Bone Jt. J.
,
87
(
6
), pp.
762
769
.
49.
De Haan
,
R.
,
Pattyn
,
C.
,
Gill
,
H.
,
Murray
,
D.
,
Campbell
,
P.
, and
De Smet
,
K.
,
2008
, “
Correlation Between Inclination of the Acetabular Component and Metal Ion Levels in Metal-on-Metal Hip Resurfacing Replacement
,”
Bone Jt. J.
,
90
(
10
), pp.
1291
1297
.
50.
Wan
,
Z.
,
Boutary
,
M.
, and
Dorr
,
L. D.
,
2008
, “
The Influence of Acetabular Component Position on Wear in Total Hip Arthroplasty
,”
J. Arthroplasty
,
23
(
1
), pp.
51
56
.
51.
D'lima
,
D. D.
,
Urquhart
,
A. G.
,
Buehler
,
K. O.
,
Walker
,
R. H.
, and
Colwell
,
C. W.
,
2000
, “
The Effect of the Orientation of the Acetabular and Femoral Components on the Range of Motion of the Hip at Different Head-Neck Ratios
,”
JBJS
,
82
(
3
), pp.
315
321
.
52.
Hisatome
,
T.
, and
Doi
,
H.
,
2011
, “
Theoretically Optimum Position of the Prosthesis in Total Hip Arthroplasty to Fulfill the Severe Range of Motion Criteria Due to Neck Impingement
,”
J. Orthop. Sci.
,
16
(
2
), pp.
229
237
.
53.
Malik
,
A.
,
Maheshwari
,
A.
, and
Dorr
,
L. D.
,
2007
, “
Impingement With Total Hip Replacement
,”
JBJS
,
89
(
8
), pp.
1832
1842
.
54.
Hart
,
A.
,
Ilo
,
K.
,
Underwood
,
R.
,
Cann
,
P.
,
Henckel
,
J.
,
Lewis
,
A.
,
Cobb
,
J.
, and
Skinner
,
J.
,
2011
, “
The Relationship Between the Angle of Version and Rate of Wear of Retrieved Metal-on-Metal Resurfacings
,”
J. Bone Jt. Surg Br.
,
93
(
3
), pp.
315
320
.
55.
Hart
,
A.
,
Muirhead-Allwood
,
S.
,
Porter
,
M.
,
Matthies
,
A.
,
Ilo
,
K.
,
Maggiore
,
P.
,
Underwood
,
R.
,
Cann
,
P.
,
Cobb
,
J.
, and
Skinner
,
J.
,
2013
, “
Which Factors Determine the Wear Rate of Large-Diameter Metal-on-Metal Hip Replacements?: Multivariate Analysis of Two Hundred and Seventy-Six Components
,”
JBJS
,
95
(
8
), pp.
678
685
.
56.
Brown
,
T. D.
, and
Callaghan
,
J. J.
,
2008
, “
Impingement in Total Hip Replacement: Mechanisms and Consequences
,”
Curr. Orthop.
,
22
(
6
), pp.
376
391
.
57.
Massoud
,
S. N.
,
Hunter
,
J. B.
,
Holdsworth
,
B. J.
,
Wallace
,
W. A.
, and
Juliusson
,
R.
,
1997
, “
Early Femoral Loosening in One Design of Cemented Hip Replacement
,”
J. Bone Jt. Surg Br.
,
79
(
4
), pp.
603
608
.
58.
Cipriano
,
C. A.
,
Issack
,
P. S.
,
Beksaç
,
B.
,
Della Valle
,
A. G.
,
Sculco
,
T. P.
, and
Salvati
,
E. A.
,
2008
, “
Metallosis after Metal-on-Polyethylene Total Hip Arthroplasty
,”
Am. J. Orthop. (Belle Mead NJ)
,
37
(2), pp.
E18
E25
.https://www.researchgate.net/publication/5452207_Metallosis_after_metal-on-polyethylene_total_hip_arthroplasty
59.
Wagner
,
P.
,
Olsson
,
H.
,
Ranstam
,
J.
,
Robertsson
,
O.
,
Zheng
,
M. H.
, and
Lidgren
,
L.
,
2012
, “
Metal-on-Metal Joint Bearings and Hematopoetic Malignancy: A Review
,”
Acta Orthop.
,
83
(
6
), pp.
553
558
.
60.
Fisher
,
J.
,
2011
, “
Bioengineering Reasons for the Failure of Metal-on-Metal Hip Prostheses
,”
J. Bone Jt. Surg. Br.
,
93
(
8
), pp.
1001
1004
.
61.
Langton
,
D.
,
Jameson
,
S.
,
Joyce
,
T.
,
Gandhi
,
J.
,
Sidaginamale
,
R.
,
Mereddy
,
P.
,
Lord
,
J.
, and
Nargol
,
A.
,
2011
, “
Accelerating Failure Rate of the ASR Total Hip Replacement
,”
J. Bone Jt. Surg. Br.
,
93
(
8
), pp.
1011
1016
.
62.
Harris
,
W. H.
,
2012
, “
Edge Loading Has a Paradoxical Effect on Wear in Metal-on-Polyethylene Total Hip Arthroplasties
,”
Clin. Orthop. Relat. Res.
,
470
(
11
), pp.
3077
3082
.
63.
Hua
,
X.
,
Wang
,
L.
,
Al-Hajjar
,
M.
,
Jin
,
Z.
,
Wilcox
,
R. K.
, and
Fisher
,
J.
,
2014
, “
Experimental Validation of Finite Element Modelling of a Modular Metal-on-Polyethylene Total Hip Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
228
(
7
), pp.
682
692
.
64.
Stops
,
A.
,
Wilcox
,
R.
, and
Jin
,
Z.
,
2012
, “
Computational Modelling of the Natural Hip: A Review of Finite Element and Multibody Simulations
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
9
), pp.
963
979
.
65.
Kraaij
,
G.
,
Zadpoor
,
A. A.
,
Tuijthof
,
G. J.
,
Dankelman
,
J.
,
Nelissen
,
R. G.
, and
Valstar
,
E. R.
,
2014
, “
Mechanical Properties of Human Bone–Implant Interface Tissue in Aseptically Loose Hip Implants
,”
J. Mech. Behav. Biomed. Mater.
,
38
, pp.
59
68
.
66.
Yamako
,
G.
,
Chosa
,
E.
,
Totoribe
,
K.
,
Hanada
,
S.
,
Masahashi
,
N.
,
Yamada
,
N.
, and
Itoi
,
E.
,
2014
, “
In-Vitro Biomechanical Evaluation of Stress Shielding and Initial Stability of a Low-Modulus Hip Stem Made of β Type Ti–33.6 Nb–4Sn Alloy
,”
Medical Engineering Physics
,
36
(
12
), pp.
1665
1671
.
67.
Yamako
,
G.
,
Chosa
,
E.
,
Zhao
,
X.
,
Totoribe
,
K.
,
Watanabe
,
S.
,
Sakamoto
,
T.
, and
Nakane
,
N.
,
2014
, “
Load-Transfer Analysis after Insertion of Cementless Anatomical Femoral Stem Using Pre-and Post-Operative CT Images Based Patient-Specific Finite Element Analysis
,”
Med. Eng. Phys.
,
36
(
6
), pp.
694
700
.
68.
Nixon
,
M.
,
Taylor
,
G.
,
Sheldon
,
P.
,
Iqbal
,
S.
, and
Harper
,
W.
,
2007
, “
Does Bone Quality Predict Loosening of Cemented Total Hip Replacements?
,”
Bone Jt. J.
,
89
(
10
), pp.
1303
1308
.https://pdfs.semanticscholar.org/b884/946a0a98cb8a68169824cca14907c9259dcb.pdf
69.
Noyama
,
Y.
,
Miura
,
T.
,
Ishimoto
,
T.
,
Itaya
,
T.
,
Niinomi
,
M.
, and
Nakano
,
T.
,
2012
, “
Bone Loss and Reduced Bone Quality of the Human Femur after Total Hip Arthroplasty Under Stress-Shielding Effects by Titanium-Based Implant
,”
Mater. Trans.
,
53
(
3
), pp.
565
570
.
70.
Klaassen
,
M. A.
,
Martínez-Villalobos
,
M.
,
Pietrzak
,
W. S.
,
Mangino
,
G. P.
, and
Guzman
,
D. C.
,
2009
, “
Midterm Survivorship of a Press-Fit, Plasma-Sprayed, Tri-Spike Acetabular Component
,”
J. Arthroplasty
,
24
(
3
), pp.
391
399
.
71.
Mak
,
M.
,
Besong
,
A.
,
Jin
,
Z.
, and
Fisher
,
J.
,
2002
, “
Effect of Microseparation on Contact Mechanics in Ceramic-on-Ceramic Hip Joint Replacements
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
216
(
6
), pp.
403
408
.
72.
Saikko
,
V.
,
2016
, “
Effect of Increased Load on the Wear of a Large Diameter Metal-on-Metal Modular Hip Prosthesis With a High Inclination Angle of the Acetabular Cup
,”
Tribol. Int.
,
96
, pp.
149
154
.
73.
Malviya
,
A.
,
Abdul
,
N.
, and
Khanduja
,
V.
,
2017
, “
Outcomes Following Total Hip Arthroplasty: A Review of the Registry Data
,”
Indian J. Orthop.
,
51
(
4
), p.
405
.
74.
Wik
,
T.
,
Enoksen
,
C.
,
Klaksvik
,
J.
,
Østbyhaug
,
P.
,
Foss
,
O.
,
Ludvigsen
,
J.
, and
Aamodt
,
A.
,
2011
, “
In Vitro Testing of the Deformation Pattern and Initial Stability of a Cementless Stem Coupled to an Experimental Femoral Head, With Increased Offset and Altered Femoral Neck Angles
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
225
(
8
), pp.
797
808
.
75.
Cash
,
D. J.
, and
Khanduja
,
V.
,
2014
, “
The Case for Ceramic-on-Polyethylene as the Preferred Bearing for a Young Adult Hip Replacement
,”
HIP International
,
24
(
5
), pp.
421
427
.
76.
Urban
,
J. A.
,
Garvin
,
K. L.
,
Boese
,
C. K.
,
Bryson
,
L.
,
Pedersen
,
D. R.
,
Callaghan
,
J. J.
, and
Miller
,
R. K.
,
2001
, “
Ceramic-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty: Seventeen to Twenty-One-Year Results
,”
JBJS
,
83
(
11
), pp.
1688
1694
.
77.
Jonkers
,
I.
,
Sauwen
,
N.
,
Lenaerts
,
G.
,
Mulier
,
M.
,
Van der Perre
,
G.
, and
Jaecques
,
S.
,
2008
, “
Relation Between Subject-Specific Hip Joint Loading, Stress Distribution in the Proximal Femur and Bone Mineral Density Changes After Total Hip Replacement
,”
J. Biomech.
,
41
(
16
), pp.
3405
3413
.
78.
Ghosh
,
R.
,
Mukherjee
,
K.
, and
Gupta
,
S.
,
2013
, “
Bone Remodelling around Uncemented Metallic and Ceramic Acetabular Components
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
227
(
5
), pp.
490
502
.
79.
Ghosh
,
R.
,
Pal
,
B.
,
Ghosh
,
D.
, and
Gupta
,
S.
,
2015
, “
Finite Element Analysis of a Hemi-Pelvis: The Effect of Inclusion of Cartilage Layer on Acetabular Stresses and Strain
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
7
), pp.
697
710
.
80.
Taddei
,
F.
,
Pancanti
,
A.
, and
Viceconti
,
M.
,
2004
, “
An Improved Method for the Automatic Mapping of Computed Tomography Numbers Onto Finite Element Models
,”
Med. Eng. Phys.
,
26
(
1
), pp.
61
69
.
81.
Anderson
,
D. E.
, and
Madigan
,
M. L.
,
2013
, “
Effects of Age-Related Differences in Femoral Loading and Bone Mineral Density on Strains in the Proximal Femur During Controlled Walking
,”
J. Appl. Biomech.
,
29
(
5
), pp.
505
516
.
82.
Li
,
J.
,
Liu
,
Y.
,
Hermansson
,
L.
, and
Soremark
,
R.
, 1993, “
Evaluation of Biocompatibility of Various Ceramic Powders With Human Fibroblasts In Vitro
,”
Clin. Mater.
,
12
, pp. 197–201.
83.
Zhang
,
M.
,
Pare
,
P.
,
King
,
R.
, and
James
,
S. P.
, 2007, “
A Novel Ultra High Molecular Weight Polyethylene–Hyaluronan Microcomposite for Use in Total Joint Replacements. II. Mechanical and Tribological Property Evaluation
,”
J. Biomed. Mater. Res. A
,
82
(1), pp. 18–26.
84.
Khorasani
,
A. M.
,
Gibson
,
I.
,
Chegini
,
N. G.
,
Goldberg
,
M.
,
Ghasemi
,
A. H.
, and
Littlefair
,
G.
, 2016, “
An Improved Static Model for Tool Deflection in Machining of Ti–6Al–4V Acetabular Shell Produced by Selective Laser Melting
,”
Measurement
,
92
, pp. 534–544.
85.
Boschetti
,
F.
,
Pennati
,
G.
,
Gervaso
,
F.
,
Peretti
,
G. M.
, and
Dubini
,
G.
, 2004, “
Biomechanical Properties of Human Articular Cartilage Under Compressive Loads
,”
Biorheology
,
41
, pp. 159–166.
86.
Khorasani
,
A. M.
,
Gibson
,
I.
,
Goldberg
,
M.
, and
Littlefair
,
G.
, 2016, “
A Survey on Mechanisms and Critical Parameters on Solidification of Selective Laser Melting During Fabrication of Ti-6Al-4V Prosthetic Acetabular Cup
,”
Mater. Design
,
103
, pp. 348–355.
87.
Khorasani
,
A. M.
,
Gibson
,
I.
,
Goldberg
,
M.
, and
Littlefair
,
G.
, 2017, “
Production of Ti-6Al-4V Acetabular Shell Using Selective Laser Melting: Possible Limitations in Fabrication
,”
Rapid Prototyping J
,
23
(1), pp. 110–121.
88.
Thompson
,
M.
,
Northmore-Ball
,
M.
, and
Tanner
,
K.
,
2002
, “
Effects of Acetabular Resurfacing Component Material and Fixation on the Strain Distribution in the Pelvis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
216
(
4
), pp.
237
245
.
89.
Dalstra
,
M.
, and
Huiskes
,
R.
,
1995
, “
Load Transfer Across the Pelvic Bone
,”
J. Biomech.
,
28
(
6
), pp.
715
724
.
90.
Clarke
,
S.
,
Phillips
,
A.
, and
Bull
,
A.
,
2013
, “
Evaluating a Suitable Level of Model Complexity for Finite Element Analysis of the Intact Acetabulum
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
7
), pp.
717
724
.
91.
Mukherjee
,
K.
, and
Gupta
,
S.
,
2016
, “
The Effects of Musculoskeletal Loading Regimes on Numerical Evaluations of Acetabular Component
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
230
(
10
), pp.
918
929
.
92.
Dostal
,
W. F.
, and
Andrews
,
J. G.
,
1981
, “
A Three-Dimensional Biomechanical Model of Hip Musculature
,”
J. Biomech.
,
14
(
11
), p.
803809
.
93.
Kanis
,
J. A.
,
Borgstrom
,
F.
,
De Laet
,
C.
,
Johansson
,
H.
,
Johnell
,
O.
,
Jonsson
,
B.
,
Oden
,
A.
,
Zethraeus
,
N.
,
Pfleger
,
B.
, and
Khaltaev
,
N.
,
2005
, “
Assessment of Fracture Risk
,”
Osteoporosis Int.
,
16
(
6
), pp.
581
589
.
94.
Klotz
,
M. C.
,
Beckmann
,
N. A.
,
Bitsch
,
R. G.
,
Seebach
,
E.
,
Reiner
,
T.
, and
Jäger
,
S.
,
2014
, “
Bone Quality Assessment for Total Hip Arthroplasty With Intraoperative Trabecular Torque Measurements
,”
J. Orthop. Surg. Res.
,
9
(
1
), p.
109
.
95.
Russell‐Aulet
,
M.
,
Wang
,
J.
,
Thornton
,
J.
,
Colt
,
E. W.
, and
Pierson
,
R. N.
,
1991
, “
Bone Mineral Density and Mass by Total‐Body Dual‐Photon Absorptiometry in Normal White and Asian Men
,”
J. Bone Miner. Res.
,
6
(
10
), pp.
1109
1113
.
96.
John
,
J. G. S.
, and
Cameron
,
R.
,
1999
,
Roderick M. Grant Physics of the Body
, 2nd ed.,
Medical Physics Publishing
,
Madison, WI
.
You do not currently have access to this content.