Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.

References

1.
Wise
,
C.
,
2011
,
Back Pain and Common Musculoskeletal Problems
,
ACP Medicine
,
Sec. 17, chap. 10
.
2.
Antoniou
,
J.
,
Epure
,
L. M.
,
Michalek
,
A. J.
,
Grant
,
M. P.
,
Iatridis
,
J. C.
, and
Mwale
,
F.
,
2013
, “
Analysis of Quantitative Magnetic Resonance Imaging and Biomechanical Parameters on Human Discs With Different Grades of Degeneration
,”
J. Magn. Reson. Imaging
,
38
, pp.
1402
1414
.10.1002/jmri.24120
3.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Annulus Fibrosus in Compression
,”
J. Biomech.
,
31
(
6
), pp.
535
544
.10.1016/S0021-9290(98)00046-3
4.
Iatridis
,
J. C.
,
Kumar
,
S.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1999
, “
Shear Mechanical Properties of Human Lumbar Annulus Fibrosus
,”
J. Orthop. Res.
,
17
(
5
), pp.
732
737
.10.1002/jor.1100170517
5.
Tanaka
,
N.
,
An
,
H. S.
,
Lim
,
T.
,
Fujiwara
,
A.
,
Jeon
,
C.
, and
Haughton
,
V. M.
,
2001
, “
The Relationship Between Disc Degeneration and Flexibility of the Lumbar Spine
,”
Spine J.
,
1
, pp.
47
56
.10.1016/S1529-9430(01)00006-7
6.
Haughton
,
V. M.
,
Lim
,
T. H.
, and
An
,
H.
,
1999
, “
Intervertebral Disk Appearance Correlated With Stiffness of Lumbar Spinal Motion Segments
,”
Am. J. Neuroradiol.
,
20
, pp.
1161
1165
. Available at: http://www.ajnr.org/content/20/6/1161.full.pdf
7.
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Yamamoto
,
I.
, and
Crisco
,
J. J.
,
1994
, “
Mechanical Behavior of the Human Lumbar and Lumbosacral Spine as Shown By Three-Dimensional Load-Displacement Curves
,”
J. Bone Jt. Surg. Am. Vol.
,
76
(
3
), pp.
413
424
. Available at: http://jbjs.org/article.aspx?articleid=22598
8.
Mimura
,
M.
,
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Crisco
,
J. J.
,
Yamamoto
,
I.
, and
Vasavada
,
A.
,
1994
, “
Disc Degeneration Affects the Multidirectional flexibility of the Lumbar Spine
,”
Spine
,
19
(
12
), pp.
1371
1380
.10.1097/00007632-199406000-00011
9.
Natarajan
R. N.
, and
Andersson
G. B. J.
,
1999
, “
The Influence of Lumbar Disc Height and Cross-Sectional Area on the Mechanical Response of the Disc to Physiologic Loading
,”
Spine
,
24
, pp.
1873
1881
.10.1097/00007632-199909150-00003
10.
Koeller
,
W.
,
Muehlhaus
,
S.
,
Meier
,
W.
, and
Hartmann
,
F.
,
1986
, “
Biomechanical Properties of Human Intervertebral Discs Subjected to Axial Dynamic Compression-Influence of Age and Degeneration
,”
J. Biomech.
,
19
, pp.
807
816
.10.1016/0021-9290(86)90131-4
11.
Amonoo-Kuofi
,
H. S.
,
1991
, “
Morphometric Changes in the Heights and Anteroposterior Diameters of the Lumbar Intervertebral Discs With Age
,”
J. Anatomy
,
175
, pp.
159
168
. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224475/pdf/janat00035-0160.pdf
12.
Koeller
,
W.
,
Meier
,
W.
, and
Hartmann
,
F.
,
1984
, “
Biomechanical Properties of Human Intervertebral Discs Subjected to Axial Dynamic Compression: A Comparison of Lumbar and Thoracic Discs
,”
Spine
,
7
, pp.
725
733
.10.1097/00007632-198410000-00013
13.
Nachemson
,
A. L.
,
Schultz
,
A. B.
, and
Berkson
,
M. H.
,
1979
, “
Mechanical Properties of Human Lumbar Spine Motion Segments: Influences of Age, Sex, Disc Level and Degeneration
,”
Spine
,
4
, pp.
1
8
.10.1097/00007632-197901000-00001
14.
Krismer
,
M.
,
Haid
,
C.
,
Behensky
,
H.
,
Kapfinger
,
P.
,
Landauer
,
F.
, and
Rachbauer
,
F.
,
2000
, “
Motion in Lumbar Functional Spine Units During Side Bending and Axial Rotation Moments Depending On the Degree of Degeneration
,”
Spine
,
25
, pp.
2020
2027
.10.1097/00007632-200008150-00004
15.
Fujiwara
,
A.
,
Lim
,
T. H.
, and
An
,
H. S.
,
2000
, “
The Effect of Disc Degeneration and Facet Joint Osteoarthritis On the Segmental Flexibility of the Lumbar Spine
,”
Spine
,
25
, pp.
3036
3044
.10.1097/00007632-200012010-00011
16.
Dall'Ara
,
E.
,
Pahr
,
D.
,
Varga
,
P.
,
Kainberger
,
F.
, and
Zysset
,
P.
,
2012
, “
QCT-Based Finite Element Models Predict Human Vertebral Strength in vitro Significantly Better Than Simulated DEXA
,”
Osteoporosis Int.
,
23
(
2
), pp.
563
572
.10.1007/s00198-011-1568-3
17.
Ryan
,
E. D.
,
Thompson
,
B. J.
,
Herda
,
T. J.
,
Sobolewski
,
E. J.
,
Costa
,
P. B.
,
Walter
,
A. A.
, and
Cramer
,
J. T.
,
2011
, “
The Relationship Between Passive Stiffness and Evoked Twitch Properties: the Influence of Muscle CSA Normalization
,”
Physiol. Meas.
,
32
, pp.
677
686
.10.1088/0967-3334/32/6/005
18.
Fouré
,
A.
,
Cornu
,
C.
, and
Nordez
,
A.
,
2012
, “
Is Tendon Stiffness Correlated to the Dissipation Coefficient?
,”
Physiol. Meas.
,
33
, pp.
N1
N9
.10.1088/0967-3334/33/1/N1
19.
Elliott
,
D. M.
, and
Sarver
,
J. J.
,
2004
, “
Young Investigator Award Winner: Validation of the Mouse and Rat Disc as Mechanical Models of the Human Lumbar Disc
,”
Spine
,
29
, pp.
713
722
.10.1097/01.BRS.0000116982.19331.EA
20.
Beckstein
,
J. C.
,
Sen
,
S.
,
Schaer
,
T. P.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2008
,
Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc Axial Compression Mechanics and Glycosaminoglycan Content
,”
Spine
,
33
, pp.
E166
E173
.10.1097/BRS.0b013e318166e001
21.
Showalter
,
B. L.
,
Beckstein
,
J. C.
,
Martin
,
J. T.
,
Beattie
,
E. E.
,
Espinoza Orías
,
A. A.
,
Schaer
,
T. P.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2012
,
Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc
,”
Spine
,
7
, pp.
E900
E907
.10.1097/BRS.0b013e31824d911c
22.
Zirbel
,
S. A.
,
Stolworthy
,
D. K.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
,
2013
, “
Intervertebral Disc Degeneration Alters Lumbar Spine Segmental Stiffness in All Modes of Loading Under a Compressive Follower Load
,”
Spine J.
,
13
, pp.
1134
1147
.10.1016/j.spinee.2013.02.010
23.
Maquer
,
G.
,
Schwiedrzik
,
J.
, and
Zysset
,
P. K.
,
2012
, “
Embedding of Human Vertebral Bodies Leads to Higher Ultimate Load and Altered Damage Localisation Under Axial Compression
,”
Comput. Methods Biomech. Biomed. Eng.
,
Epub ahead of print
, pp.
1
12
.10.1080/10255842.2012.744400
24.
Schroeder
,
Y.
,
Wilson
,
W.
,
Huyghe
,
J. M.
, and
Baaijens
,
F. P.
,
2006
, “
Osmoviscoelastic Finite Element Model of the Intervertebral Disc
,”
Eur. Spine J.
,
15
(
3
), pp.
361
371
.10.1007/s00586-006-0110-3
25.
Shirazi-Adl
,
A.
,
Taheri
,
M.
, and
Urban
,
J. P. G.
,
2010
, “
Analysis of Cell Viability in Intervertebral Disc: Effect of Endplate Permeability on Cell Population
,”
J. Biomech.
,
43
(
7
), pp.
1330
1336
.10.1016/j.jbiomech.2010.01.023
26.
Jones
,
A. C.
, and
Wilcox
,
R. K.
,
2008
, “
Finite Element Analysis of the Spine: Towards a Framework of Verification, Validation and Sensitivity Analysis
,”
Med. Eng. Phys.
,
30
(
10
), pp.
1287
1304
.10.1016/j.medengphy.2008.09.006
27.
Inoue
,
H.
,
Ohmori
,
K.
,
Miyasaka
,
K.
, and
Hosoe
,
H.
,
1999
, “
Radiographic Evaluation of the Lumbosacral Disc Height
,”
Skeletal Radiol.
,
28
(
11
), pp.
638
643
.10.1007/s002560050566
28.
Goto
,
K.
,
Tajima
,
N.
,
Chosa
,
E.
,
Totoribe
,
K.
,
Kuroki
,
H.
,
Arizumi
,
Y.
, and
Arai
,
T.
,
2002
, “
Mechanical Analysis of the Lumbar Vertebrae in a Three-Dimensional Finite Element Method Model in Which Intradiscal Pressure in the Nucleus Pulposus was Used to Establish The Model
,”
J. Orthop. Sci.
,
7
(
2
), pp.
243
246
.10.1007/s007760200040
29.
Moramarco
,
V.
,
Perez del Palomar
,
A.
,
Pappalettere
,
C.
, and
Doblaré
,
M.
,
2010
, “
An Accurate Validation of a Computational Model of a Human Lumbosacral Segment
,”
J. Biomech.
,
43
(
2
), pp.
334
342
.10.1016/j.jbiomech.2009.07.042
30.
Parthasarathy
,
V. N.
,
Graichen
,
C. M.
, and
Hathaway
,
A. F.
,
1994
,
A Comparison of Tetrahedron Quality Measures
,”
Finite Elements Anal. Des.
,
15
(
3
), pp.
255
261
.10.1016/0168-874X(94)90033-7
31.
Knupp
,
P. M.
,
2000
, “
Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated Quantities. Part I—A Framework for Surface Mesh Optimization
,”
Int. J. Numer. Methods Eng.
,
48
(
3
), pp.
401
420
.10.1002/(SICI)1097-0207(20000530)48:3<401::AID-NME880>3.0.CO;2-D
32.
Knupp
,
P. M.
,
2003
, “
Algebraic Mesh Quality Metrics for Unstructured Initial Meshes
,”
Finite Elements Anal. Des.
,
39
(
3
), pp.
217
241
.10.1016/S0168-874X(02)00070-7
33.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
, pp.
1
48
.10.1023/A:1010835316564
34.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-Bauer
,
C. A.
,
2001
, “
An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies
,”
Comput. Methods Biomech. Biomed. Eng.neering
,
4
(
3
), pp.
209
229
.10.1080/10255840108908005
35.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Fröhlich
,
M.
,
2004
, “
Multi-Segment FEA of the Human Lumbar Spine Including the Heterogeneity of the Annulus Fibrosus
,”
Comput. Mech.
,
34
(
2
), pp.
147
163
.10.1007/s00466-004-0563-3
36.
Peyraut
,
F.
,
Renaud
,
C.
,
Labed
,
N.
, and
Feng
,
Z. Q.
,
2009
, “
Modélisation De Tissus Biologiques En Hyperélasticité Anisotrope–Étude Théorique Et Approche Éléments Finis
,”
Comptes Rendus Mécanique
,
337
(
2
), pp.
101
106
.10.1016/j.crme.2009.03.007
37.
Del Palomar
,
A. P.
,
Calvo
,
B.
, and
Doblaré
,
M.
,
2008
, “
An Accurate Finite Element Model of the Cervical Spine Under Quasi-Static Loading
,”
J. Biomech.
,
41
(
3
), pp.
523
531
.10.1016/j.jbiomech.2007.10.012
38.
Markolf
,
K. L.
, and
Morris
,
J. M.
,
1974
, “
The Structural Components of the Vertebral Disc: A Study of Their Contribution to the Ability of the Disc to Withstand Compressive Force
,”
J. Bone Jt. Surg.
,
56
, pp.
675
687
. Available at: http://jbjs.org/article.aspx?articleid=16268
39.
Brown
,
T.
,
Hansen
,
R. J.
, and
Yorra
,
A. J.
,
1957
, “
Some Mechanical Tests on the Lumbosacral Spine With Particular Reference to Intervertebral Disc
,”
J. Bone Jt. Surg.
,
39
, pp.
1135
1164
. Available at: http://jbjs.org/article.aspx?articleid=12636
40.
Guan
,
Y.
,
Yoganandam
,
N.
,
Moore
,
J.
,
Pintar
,
F. A.
,
Zhang
,
J.
,
Maiman
,
D. J.
,
Laud
,
P.
,
2007
, “
Moment-Rotation Responses of the Lumbosacral Spinal Column
,”
J. Biomech.
,
40
, pp.
1975
1980
.10.1016/j.jbiomech.2006.09.027
41.
Bisschop
,
A.
,
Kingma
,
I.
,
Bleys
,
R. L. A. W.
,
Paul
,
C. P. L.
,
van der Veen
,
A. J.
,
van Royen
,
B. J.
, and
van Dieën
,
J. H.
,
2013
, “
Effects of Repetitive Movement on Range of Motion and Stiffness Around the Neutral Orientation of the Human Lumbar Spine
,”
J. Biomech.
,
46
, pp.
187
191
.10.1016/j.jbiomech.2012.10.014
42.
Schmidt
,
T. A.
,
An
,
H. S.
,
Lim
,
T. H.
,
Nowicki
,
B. H.
, and
Haughton
,
V. M.
,
1998
, “
The Stiffness of Lumbar Spinal Motion Segments With a High-Intensity Zone in the Annulus Fibrosus
,”
Spine
,
23
, pp.
2167
2173
.10.1097/00007632-199810150-00005
43.
Brown
,
M. D.
,
Holmes
,
D. C.
, and
Heiner
,
A. D.
,
2002
, “
Measurement of Cadaver Lumbar Spine Motion Segment Stiffness
,”
Spine
,
27
, pp.
918
922
.10.1097/00007632-200205010-00006
44.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig
,
G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
Neuroimage
,
31
, pp.
1116
1128
.10.1016/j.neuroimage.2006.01.015
45.
Panjabi
,
M. M.
,
1988
, “
Biomechanical Evaluation of Spinal Fixation Devices: A Conceptual Framework
,”
Spine
,
13
(
10
), pp.
1129
1134
.10.1097/00007632-198810000-00013
46.
Wilke
,
H. J.
,
Wenger
,
K.
, and
Claes
,
L.
,
1998
,
Testing Criteria for Spinal Implants: Recommendations for the Standardization of Invitro Stability Testing of Spinal Implants,”
Eur. Spine J.
,
7
, pp.
148
154
.10.1007/s005860050045
47.
Krismer
,
M.
,
Haid
,
C.
,
Behensky
,
H.
,
Kapfinger
,
P.
,
Landauer
,
F.
, and
Rachbauer
,
F.
,
2000
, “
Motion in Lumbar Functional Spine Units During Side Bending and Axial Rotation Moments Depending on the Degree of Degeneration
,”
Spine
,
25
(
16
), pp.
2020
2027
.10.1097/00007632-200008150-00004
48.
Lin
,
H. S.
,
Liu
,
Y. K.
, and
Adams
,
K. H.
,
1978
, “
Mechanical Response of the Lumbar Intervertebral Joint Under Physiological (Complex) Loading
,”
Tuberculosis
,
1
(
L2
), pp.
L4
L5
. Available at: http://jbjs.org/article.aspx?articleid=17371
49.
Gédet
,
P.
,
Thistlethwaite
,
P. A.
, and
Ferguson
,
S. J.
,
2007
, “
Minimizing Errors During in vitro Testing of Multisegmental Spine Specimens: Considerations for Component Selection and Kinematic Measurement
,”
J. Biomech.
,
40
, pp.
1881
1885
.10.1016/j.jbiomech.2006.07.024
50.
Gédet
,
P.
,
Thistlethwaite
,
P. A.
, and
Ferguson
,
S. J.
,
2009
, “
Comparative Biomechanical Investigation of a Modular Dynamic Lumbar Stabilization System and the Dynesys System
,”
Eur. Spine J.
,
18
, pp.
1504
1511
.10.1007/s00586-009-1077-7
51.
Wilke
,
H. J.
,
Jungkunz
,
B.
,
Wenger
,
K.
, and
Claes
,
L. E.
,
1998
,
Spinal Segment Range of Motion as a Function of In vitro Test Conditions: Effects of Exposure Period, Accumulated Cycles, Angular-Deformation Rate, and Moisture Condition
,”
Anat. Rec.
,
251
(
1
), pp.
15
19
.10.1002/(SICI)1097-0185(199805)251:1<15::AID-AR4>3.0.CO;2-D
52.
Belavy
,
D. L.
,
Armbrecht
,
G.
, and
Felsenberg
,
D.
,
2012
, “
Evaluation of Lumbar Disc and Spine Morphology: Long-Term Repeatability and Comparison of Methods
,”
Physiol. Meas.
,
33
, pp.
1313
1321
.10.1088/0967-3334/33/8/1313
53.
Tunset
,
A.
,
Kjaer
,
P.
,
Chreiteh
,
S. S.
,
Jensen
,
T. S.
,
2013
,
A Method for Quantitative Measurement of Lumbar Intervertebral Disc Structures: An Intra- and Inter-Rater Agreement and Reliability Stud
,”
Chiropractic Manual Ther.
,
21
(
1
), pp.
1
16
.10.1186/2045-709X-21-1
54.
Niosi
,
C. A.
, and
Oxland
,
T. S.
,
2004
, “
Degenerative Mechanics of the Lumbar Spine
,”
Spine J.
,
4
, pp.
202S
208S
.10.1016/j.spinee.2004.07.013
55.
Ellingson
,
A. M.
,
Mehta
,
H.
,
Polly
,
D. W.
, Jr.
,
Ellermann
,
J.
, and
Nuckley
,
D. J.
,
2013
, “
Disc Degeneration Assessed by Quantitative T2*(T2 Star) Correlated With Functional Lumbar Mechanics
,”
Spine
,
38
(
24
), pp.
E1533
E1540
.10.1097/BRS.0b013e3182a59453
56.
Peng
,
B.
,
Wu
,
W.
,
Hou
,
S.
,
Li
,
P.
,
Zhang
,
C.
, and
Yang
,
Y.
,
2005
, “
The Pathogenesis of Discogenic Low Back Pain
,”
J. Bone Jt. Surg.
,
87
(
1
), pp.
62
67
..10.1302/0301-620X.87B1.15708
57.
Peng
,
B.
,
Wu
,
W.
,
Hou
,
S.
,
Li
,
P.
,
Zhang
,
C.
, and
Yang
,
Y.
,
2006
, “
The Pathogenesis and Clinical Significance of a High-Intensity Zone (HIZ) of Lumbar Intervertebral Disc on MR Imaging in the Patient With Discogenic Low Back Pain
,”
Eur. Spine J.
,
15
(
5
), pp.
583
587
.10.1007/s00586-005-0892-8
58.
Maquer
,
G.
,
Brandejsky
,
V.
,
Benneker
,
L. M.
,
Watanabe
,
A.
,
Vermathen
,
P.
, and
Zysset
,
P. K.
,
2013
, “
Human Intervertebral Disc Stiffness Correlates Better With the Otsu Threshold Computed From Axial T2 Map of Its Posterior Annulus Fibrosus Than With Clinical Classifications
,”
Med. Eng. Phys.
,
36
, pp.
219
225
.10.1016/j.medengphy.2013.11.008
59.
Dhillon
,
N.
,
Bass
,
E. C.
, and
Lotz
,
J. C.
,
2001
, “
Effect of Frozen Storage on the Creep Behavior of Human Intervertebral Discs
,”
Spine
,
26
(
8
), pp.
883
888
.10.1097/00007632-200104150-00011
60.
Tan
J. S.
, and
Uppuganti
S.
,
2012
, “
Cumulative Multiple Freeze-Thaw Cycles and Testing Does Not Affect Subsequent Within-Day Variation in Intervertebral Flexibility of Human Cadaveric Lumbosacral Spine
,”
Spine
,
37
, pp.
E1238
E1242
.10.1097/BRS.0b013e31826111a3
61.
Race
,
A.
,
Broom
,
N. D.
, and
Robertson
,
P.
,
2000
, “
Effect of Loading Rate and Hydration on the Mechanical Properties of the Disc
,”
Spine
,
25
(
6
), pp.
662
669
.10.1097/00007632-200003150-00003
62.
Van Engelen
,
S. J. P. M.
,
Ellenbroek
,
M. H. M.
,
van Royen
,
B. J.
,
de Boer
,
A.
, and
van Dieën
,
J. H.
,
2012
, “
Validation of Vibration Testing for the Assessment of the Mechanical Properties of Human Lumbar Motion Segments
,”
J. Biomech.
,
45
, pp.
1753
1758
.10.1016/j.jbiomech.2012.05.009
63.
Stokes
,
I. A.
, and
Gardner-Morse
,
M.
,
2003
, “
Spinal Stiffness Increases With Axial Load: Another Stabilizing Consequence of Muscle Action
,”
J. Electromyogr. Kinesiol.
,
13
(
4
), pp.
397
402
.10.1016/S1050-6411(03)00046-4
64.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A.
,
2003
, “
Physiological Axial Compressive Preloads Increase Motion Segment Stiffness, Linearity and Hysteresis in All Six Degrees of Freedom for Small Displacements About the Neutral Posture
,”
J. Orthop. Res.
,
21
, pp.
547
552
.10.1016/S0736-0266(02)00199-7
You do not currently have access to this content.