Human stem cell-derived cardiomyocytes hold promise for heart repair, disease modeling, drug screening, and for studies of developmental biology. All of these applications can be improved by assessing the contractility of cardiomyocytes at the single cell level. We have developed an in vitro platform for assessing the contractile performance of stem cell-derived cardiomyocytes that is compatible with other common endpoints such as microscopy and molecular biology. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were seeded onto elastomeric micropost arrays in order to characterize the contractile force, velocity, and power produced by these cells. We assessed contractile function by tracking the deflection of microposts beneath an individual hiPSC-CM with optical microscopy. Immunofluorescent staining of these cells was employed to assess their spread area, nucleation, and sarcomeric structure on the microposts. Following seeding of hiPSC-CMs onto microposts coated with fibronectin, laminin, and collagen IV, we found that hiPSC-CMs on laminin coatings demonstrated higher attachment, spread area, and contractile velocity than those seeded on fibronectin or collagen IV coatings. Under optimized conditions, hiPSC-CMs spread to an area of approximately 420 μm2, generated systolic forces of approximately 15 nN/cell, showed contraction and relaxation rates of 1.74 μm/s and 1.46 μm/s, respectively, and had a peak contraction power of 29 fW. Thus, elastomeric micropost arrays can be used to study the contractile strength and kinetics of hiPSC-CMs. This system should facilitate studies of hiPSC-CM maturation, disease modeling, and drug screens as well as fundamental studies of human cardiac contraction.

References

1.
Bonow
,
R.
,
Mann
,
D. L.
,
Zipes
,
D. P.
, and
Libby
,
P.
,
2012
,
Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine
,
Saunders
,
Philadelphia, PA
.
2.
Karantalis
,
V.
,
Balkan
,
W.
,
Schulman
,
I. H.
,
Hatzistergos
,
K. E.
, and
Hare
,
J. M.
,
2012
, “
Cell-Based Therapy for Prevention and Reversal of Myocardial Remodeling
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
303
(
3
), pp.
H256
H270
.
3.
Suncion
,
V. Y.
,
Schulman
,
I. H.
, and
Hare
,
J. M.
,
2012
, “
Concise Review: The Role of Clinical Trials in Deciphering Mechanisms of Action of Cardiac Cell-Based Therapy
,”
Stem Cells Transl. Med.
,
1
(
1
), pp.
29
35
.10.5966/sctm.2011-0014
4.
Bellin
,
M.
,
Marchetto
,
M. C.
,
Gage
,
F. H.
, and
Mummery
,
C. L.
,
2012
, “
Induced Pluripotent Stem Cells: The New Patient?
,”
Nat. Rev. Mol. Cell Biol.
,
13
(
11
), pp.
713
726
.10.1038/nrm3448
5.
Grskovic
,
M.
,
Javaherian
,
A.
,
Strulovici
,
B.
, and
Daley
,
G. Q.
,
2011
, “
Induced Pluripotent Stem Cells-Opportunities for Disease Modelling and Drug Discovery
,”
Nat. Rev. Drug Discov.
,
10
(
12
), pp.
915
929
.
6.
Dambrot
,
C.
,
Passier
,
R.
,
Atsma
,
D.
, and
Mummery
,
C. L.
,
2011
, “
Cardiomyocyte Differentiation of Pluripotent Stem Cells and Their Use as Cardiac Disease Models
,”
Biochem. J.
,
434
(
1
), pp.
25
35
.10.1042/BJ20101707
7.
Das
,
A. K.
, and
Pal
,
R.
,
2010
, “
Induced Pluripotent Stem Cells (Ipscs): The Emergence of a New Champion in Stem Cell Technology-Driven Biomedical Applications
,”
J. Tissue Eng. Regener. Med.
,
4
(
6
), pp.
413
421
.
8.
Freund
,
C.
, and
Mummery
,
C. L.
,
2009
, “
Prospects for Pluripotent Stem Cell-Derived Cardiomyocytes in Cardiac Cell Therapy and as Disease Models
,”
J. Cell. Biochem.
,
107
(
4
), pp.
592
599
.10.1002/jcb.22164
9.
Mercola
,
M.
,
Colas
,
A.
, and
Willems
,
E.
,
2013
, “
Induced Pluripotent Stem Cells in Cardiovascular Drug Discovery
,”
Circ. Res.
,
112
(
3
), pp.
534
548
.10.1161/CIRCRESAHA.111.250266
10.
Miki
,
K.
,
Uenaka
,
H.
,
Saito
,
A.
,
Miyagawa
,
S.
,
Sakaguchi
,
T.
,
Higuchi
,
T.
,
Shimizu
,
T.
,
Okano
,
T.
,
Yamanaka
,
S.
, and
Sawa
,
Y.
,
2012
, “
Bioengineered Myocardium Derived From Induced Pluripotent Stem Cells Improves Cardiac Function and Attenuates Cardiac Remodeling Following Chronic Myocardial Infarction in Rats
,”
Stem Cells Transl. Med.
,
1
(
5
), pp.
430
437
.10.5966/sctm.2011-0038
11.
Kawamura
,
M.
,
Miyagawa
,
S.
,
Miki
,
K.
,
Saito
,
A.
,
Fukushima
,
S.
,
Higuchi
,
T.
,
Kawamura
,
T.
,
Kuratani
,
T.
,
Daimon
,
T.
,
Shimizu
,
T.
,
Okano
,
T.
, and
Sawa
,
Y.
,
2012
, “
Feasibility, Safety, and Therapeutic Efficacy of Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Sheets in a Porcine Ischemic Cardiomyopathy Model
,”
Circulation
,
126
(
11 Suppl 1
), pp.
S29
S37
.10.1161/CIRCULATIONAHA.111.084343
12.
Masumoto
,
H.
,
Matsuo
,
T.
,
Yamamizu
,
K.
,
Uosaki
,
H.
,
Narazaki
,
G.
,
Katayama
,
S.
,
Marui
,
A.
,
Shimizu
,
T.
,
Ikeda
,
T.
,
Okano
,
T.
,
Sakata
,
R.
, and
Yamashita
,
J. K.
,
2012
, “
Pluripotent Stem Cell-Engineered Cell Sheets Reassembled With Defined Cardiovascular Populations Ameliorate Reduction in Infarct Heart Function Through Cardiomyocyte-Mediated Neovascularization
,”
Stem Cells
,
30
(
6
), pp.
1196
1205
.10.1002/stem.1089
13.
Mauritz
,
C.
,
Martens
,
A.
,
Rojas
,
S. V.
,
Schnick
,
T.
,
Rathert
,
C.
,
Schecker
,
N.
,
Menke
,
S.
,
Glage
,
S.
,
Zweigerdt
,
R.
,
Haverich
,
A.
,
Martin
,
U.
, and
Kutschka
,
I.
,
2011
, “
Induced Pluripotent Stem Cell (iPSC)-Derived Flk-1 Progenitor Cells Engraft, Differentiate, and Improve Heart Function in a Mouse Model of Acute Myocardial Infarction
,”
Eur. Heart J.
,
32
(
21
), pp.
2634
2641
.10.1093/eurheartj/ehr166
14.
Singla
,
D. K.
,
Long
,
X.
,
Glass
,
C.
,
Singla
,
R. D.
, and
Yan
,
B.
,
2011
, “
Induced Pluripotent Stem (IPS) Cells Repair and Regenerate Infarcted Myocardium
,”
Mol. Pharm.
,
8
(
5
), pp.
1573
1581
.10.1021/mp2001704
15.
Mosna
,
F.
,
Annunziato
,
F.
,
Pizzolo
,
G.
, and
Krampera
,
M.
,
2010
, “
Cell Therapy for Cardiac Regeneration After Myocardial Infarct: Which Cell Is the Best?
,”
Cardiovasc. Hematol. Agents Med. Chem.
,
8
(
4
), pp.
227
243
.10.2174/187152510792481216
16.
Yin
,
S.
,
Zhang
,
X.
,
Zhan
,
C.
,
Wu
,
J.
,
Xu
,
J.
, and
Cheung
,
J.
,
2005
, “
Measuring Single Cardiac Myocyte Contractile Force Via Moving a Magnetic Bead
,”
Biophys. J.
,
88
(
2
), pp.
1489
1495
.10.1529/biophysj.104.048157
17.
Hazeltine
,
L. B.
,
Simmons
,
C. S.
,
Salick
,
M. R.
,
Lian
,
X.
,
Badur
,
M. G.
,
Han
,
W.
,
Delgado
,
S. M.
,
Wakatsuki
,
T.
,
Crone
,
W. C.
,
Pruitt
,
B. L.
, and
Palecek
,
S. P.
,
2012
, “
Effects of Substrate Mechanics on Contractility of Cardiomyocytes Generated From Human Pluripotent Stem Cells
,”
Int. J. Cell Biol.
,
2012
, p.
508294
.10.1155/2012/508294
18.
Hersch
,
N.
,
Wolters
,
B.
,
Dreissen
,
G.
,
Springer
,
R.
,
Kirchgebner
,
N.
,
Merkel
,
R.
, and
Hoffmann
,
B.
,
2013
, “
The Constant Beat: Cardiomyocytes Adapt Their Forces by Equal Contraction Upon Environmental Stiffening
,”
Biol. Open
,
2
, pp.
351
361
.10.1242/bio.20133830
19.
Jacot
,
J. G.
,
Mcculloch
,
A. D.
, and
Omens
,
J. H.
,
2008
, “
Substrate Stiffness Affects the Functional Maturation of Neonatal Rat Ventricular Myocytes
,”
Biophys. J.
,
95
(
7
), pp.
3479
3487
.10.1529/biophysj.107.124545
20.
Jacot
,
J. G.
,
Martin
,
J. C.
, and
Hunt
,
D. L.
,
2010
, “
Mechanobiology of Cardiomyocyte Development
,”
J. Biomech.
,
43
(
1
), pp.
93
98
.10.1016/j.jbiomech.2009.09.014
21.
Iribe
,
G.
,
Helmes
,
M.
, and
Kohl
,
P.
,
2007
, “
Force-Length Relations in Isolated Intact Cardiomyocytes Subjected to Dynamic Changes in Mechanical Load
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
292
(
3
), pp.
H1487
H1497
.
22.
Borbely
,
A.
,
Van Der Velden
,
J.
,
Papp
,
Z.
,
Bronzwaer
,
J. G.
,
Edes
,
I.
,
Stienen
,
G. J.
, and
Paulus
,
W. J.
,
2005
, “
Cardiomyocyte Stiffness in Diastolic Heart Failure
,”
Circulation
,
111
(
6
), pp.
774
781
.10.1161/01.CIR.0000155257.33485.6D
23.
Nishimura
,
S.
,
Yasuda
,
S.
,
Katoh
,
M.
,
Yamada
,
K. P.
,
Yamashita
,
H.
,
Saeki
,
Y.
,
Sunagawa
,
K.
,
Nagai
,
R.
,
Hisada
,
T.
, and
Sugiura
,
S.
,
2004
, “
Single Cell Mechanics of Rat Cardiomyocytes Under Isometric, Unloaded, and Physiologically Loaded Conditions
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
287
(
1
), pp.
H196
H202
.
24.
Nishimura
,
S.
,
Nagai
,
S.
,
Sata
,
M.
,
Katoh
,
M.
,
Yamashita
,
H.
,
Saeki
,
Y.
,
Nagai
,
R.
, and
Sugiura
,
S.
,
2006
, “
Expression of Green Fluorescent Protein Impairs the Force-Generating Ability of Isolated Rat Ventricular Cardiomyocytes
,”
Mol. Cell. Biochem.
,
286
(
1–2
), pp.
59
65
.10.1007/s11010-005-9090-6
25.
Domke
,
J.
,
Parak
,
W. J.
,
George
,
M.
,
Gaub
,
H. E.
, and
Radmacher
,
M.
,
1999
, “
Mapping the Mechanical Pulse of Single Cardiomyocytes With the Atomic Force Microscope
,”
Eur. Biophys. J.
,
28
(
3
), pp.
179
186
.10.1007/s002490050198
26.
Chang
,
W. T.
,
Yu
,
D.
,
Lai
,
Y. C.
,
Lin
,
K. Y.
, and
Liau
,
I.
,
2012
, “
Characterization of the Mechanodynamic Response of Cardiomyocytes With Atomic Force Microscopy
,”
Anal. Chem.
,
85
, pp.
1395
1400
.10.1021/ac3022532
27.
Liu
,
J.
,
Sun
,
N.
,
Bruce
,
M. A.
,
Wu
,
J. C.
, and
Butte
,
M. J.
,
2012
, “
Atomic Force Mechanobiology of Pluripotent Stem Cell-Derived Cardiomyocytes
,”
PLoS One
,
7
(
5
), p.
e37559
.10.1371/journal.pone.0037559
28.
Brixius
,
K.
,
Hoischen
,
S.
,
Reuter
,
H.
,
Lasek
,
K.
, and
Schwinger
,
R. H.
,
2001
, “
Force/Shortening-Frequency Relationship in Multicellular Muscle Strips and Single Cardiomyocytes of Human Failing and Nonfailing Hearts
,”
J. Card. Failure
,
7
(
4
), pp.
335
341
.10.1054/jcaf.2001.29902
29.
Edes
,
I. F.
,
Czuriga
,
D.
,
Csanyi
,
G.
,
Chlopicki
,
S.
,
Recchia
,
F. A.
,
Borbely
,
A.
,
Galajda
,
Z.
,
Edes
,
I.
,
Van Der Velden
,
J.
,
Stienen
,
G. J. M.
, and
Papp
,
Z.
,
2007
, “
Rate of Tension Redevelopment Is Not Modulated by Sarcomere Length in Permeabilized Human, Murine, and Porcine Cardiomyocytes
,”
Am. J. Physiol.: Regul., Integr. Comp. Physiol.
,
293
(
1
), pp.
R20
R29
.
30.
Tanaka
,
Y.
,
Morishima
,
K.
,
Shimizu
,
T.
,
Kikuchi
,
A.
,
Yamato
,
M.
,
Okano
,
T.
, and
Kitamori
,
T.
,
2006
, “
Demonstration of a PDMS-Based Bio-Microactuator Using Cultured Cardiomyocytes to Drive Polymer Micropillars
,”
Lab Chip
,
6
(
2
), pp.
230
235
.10.1039/b512099c
31.
Vannier
,
C.
,
Chevassus
,
H.
, and
Vassort
,
G.
,
1996
, “
Ca-Dependence of Isometric Force Kinetics in Single Skinned Ventricular Cardiomyocytes From Rats
,”
Cardiovasc. Res.
,
32
(
3
), pp.
580
586
.10.1016/0008-6363(96)00103-4
32.
Borg
,
T. K.
,
Rubin
,
K.
,
Lundgren
,
E.
,
Borg
,
K.
, and
Obrink
,
B.
,
1984
, “
Recognition of Extracellular Matrix Components by Neonatal and Adult Cardiac Myocytes
,”
Dev. Biol.
,
104
(
1
), pp.
86
96
.10.1016/0012-1606(84)90038-1
33.
Xi
,
J.
,
Khalil
,
M.
,
Shishechian
,
N.
,
Hannes
,
T.
,
Pfannkuche
,
K.
,
Liang
,
H.
,
Fatima
,
A.
,
Haustein
,
M.
,
Suhr
,
F.
,
Bloch
,
W.
,
Reppel
,
M.
,
Saric
,
T.
,
Wernig
,
M.
,
Janisch
,
R.
,
Brockmeier
,
K.
,
Hescheler
,
J.
, and
Pillekamp
,
F.
,
2010
, “
Comparison of Contractile Behavior of Native Murine Ventricular Tissue and Cardiomyocytes Derived From Embryonic or Induced Pluripotent Stem Cells
,”
FASEB J.
,
24
(
8
), pp.
2739
2751
.10.1096/fj.09-145177
34.
Eschenhagen
,
T.
,
Fink
,
C.
,
Remmers
,
U.
,
Scholz
,
H.
,
Wattchow
,
J.
,
Weil
,
J.
,
Zimmermann
,
W.
,
Dohmen
,
H. H.
,
Schafer
,
H.
,
Bishopric
,
N.
,
Wakatsuki
,
T.
, and
Elson
,
E. L.
,
1997
, “
Three-Dimensional Reconstitution of Embryonic Cardiomyocytes in a Collagen Matrix: A New Heart Muscle Model System
,”
FASEB J.
,
11
(
8
), pp.
683
694
.
35.
Pillekamp
,
F.
,
Reppel
,
M.
,
Rubenchyk
,
O.
,
Pfannkuche
,
K.
,
Matzkies
,
M.
,
Bloch
,
W.
,
Sreeram
,
N.
,
Brockmeier
,
K.
, and
Hescheler
,
J.
,
2007
, “
Force Measurements of Human Embryonic Stem Cell-Derived Cardiomyocytes in an in Vitro Transplantation Model
,”
Stem Cells
,
25
(
1
), pp.
174
180
.10.1634/stemcells.2006-0094
36.
Kim
,
J.
,
Park
,
J.
,
Na
,
K.
,
Yang
,
S.
,
Baek
,
J.
,
Yoon
,
E.
,
Choi
,
S.
,
Lee
,
S.
,
Chun
,
K.
,
Park
,
J.
, and
Park
,
S.
,
2008
, “
Quantitative Evaluation of Cardiomyocyte Contractility in a 3D Microenvironment
,”
J. Biomech.
,
41
(
11
), pp.
2396
2401
.10.1016/j.jbiomech.2008.05.036
37.
Park
,
J.
,
Ryu
,
J.
,
Choi
,
S. K.
,
Seo
,
E.
,
Cha
,
J. M.
,
Ryu
,
S.
,
Kim
,
J.
,
Kim
,
B.
, and
Lee
,
S. H.
,
2005
, “
Real-Time Measurement of the Contractile Forces of Self-Organized Cardiomyocytes on Hybrid Biopolymer Microcantilevers
,”
Anal. Chem.
,
77
(
20
), pp.
6571
6580
.10.1021/ac0507800
38.
Boudou
,
T.
,
Legant
,
W. R.
,
Mu
,
A.
,
Borochin
,
M. A.
,
Thavandiran
,
N.
,
Radisic
,
M.
,
Zandstra
,
P. W.
,
Epstein
,
J. A.
,
Margulies
,
K. B.
, and
Chen
,
C. S.
,
2011
, “
A Microfabricated Platform to Measure and Manipulate the Mechanics of Engineered Cardiac Microtissues
,”
Tissue Eng. Part A
,
18
(9–10), pp.
910
919
.10.1089/ten.tea.2011.0341
39.
Legant
,
W. R.
,
Pathak
,
A.
,
Yang
,
M. T.
,
Deshpande
,
V. S.
,
Mcmeeking
,
R. M.
, and
Chen
,
C. S.
,
2009
, “
Microfabricated Tissue Gauges to Measure and Manipulate Forces From 3D Microtissues
,”
Proc. Natl. Acad. Sci. USA
,
106
(
25
), pp.
10097
10102
.10.1073/pnas.0900174106
40.
Kim
,
K.
,
Taylor
,
R.
,
Sim
,
J. Y.
,
Park
,
S. J.
,
Norman
,
J.
,
Fajardo
,
G.
,
Bernstein
,
D.
, and
Pruitt
,
B. L.
,
2011
, “
Calibrated Micropost Arrays for Biomechanical Characterisation of Cardiomyocytes
,”
Micro Nano Lett.
,
6
(
5
), pp.
317
322
.10.1049/mnl.2011.0031
41.
Zhao
,
Y.
,
Lim
,
C. C.
,
Sawyer
,
D. B.
,
Liao
,
R. L.
, and
Zhang
,
X.
,
2005
, “
Cellular Force Measurements Using Single-Spaced Polymeric Microstructures: Isolating Cells From Base Substrate
,”
J. Micromech. Microeng.
,
15
(
9
), pp.
1649
1656
.10.1088/0960-1317/15/9/006
42.
Zhao
,
Y.
, and
Zhang
,
X.
,
2006
, “
Cellular Mechanics Study in Cardiac Myocytes Using PDMS Pillars Array
,”
Sens. Actuators, A
,
125
(
2
), pp.
398
404
.10.1016/j.sna.2005.08.032
43.
Rodriguez
,
A. G.
,
Han
,
S. J.
,
Regnier
,
M.
, and
Sniadecki
,
N. J.
,
2011
, “
Substrate Stiffness Increases Twitch Power of Neonatal Cardiomyocytes in Correlation With Changes in Myofibril Structure and Intracellular Calcium
,”
Biophys. J.
,
101
(
10
), pp.
2455
2464
.10.1016/j.bpj.2011.09.057
44.
Rodriguez
,
A. G.
,
Rodriguez
,
M. L.
,
Han
,
S. J.
,
Sniadecki
,
N. J.
, and
Regnier
,
M.
,
2013
, “
Enhanced Contractility With 2 Deoxy-ATP and EMD 57033 Leads to Reduced Myofibril Structure and Twitch Power in Neonatal Cardiomyocytes
,”
Integr. Biol.
,
5
(11), pp.
1366
1373
.10.1039/c3ib40135a
45.
Taylor
,
R. E.
,
Kim
,
K.
,
Sun
,
N.
,
Park
,
S. J.
,
Sim
,
J. Y.
,
Fajardo
,
G.
,
Bernstein
,
D.
,
Wu
,
J. C.
, and
Pruitt
,
B. L.
,
2013
, “
Sacrificial Layer Technique for Axial Force Post Assay of Immature Cardiomyocytes
,”
Biomed. Microdevices
,
15
(
1
), pp.
171
181
.10.1007/s10544-012-9710-3
46.
Terracio
,
L.
,
Rubin
,
K.
,
Gullberg
,
D.
,
Balog
,
E.
,
Carver
,
W.
,
Jyring
,
R.
, and
Borg
,
T. K.
,
1991
, “
Expression of Collagen Binding Integrins During Cardiac Development and Hypertrophy
,”
Circ. Res.
,
68
(
3
), pp.
734
744
.10.1161/01.RES.68.3.734
47.
Lundgren
,
E.
,
Terracio
,
L.
,
Mardh
,
S.
, and
Borg
,
T. K.
,
1985
, “
Extracellular Matrix Components Influence the Survival of Adult Cardiac Myocytes in vitro
,”
Exp. Cell Res.
,
158
(
2
), pp.
371
381
.10.1016/0014-4827(85)90462-8
48.
Lundgren
,
E.
,
Terracio
,
L.
, and
Borg
,
T. K.
,
1985
, “
Adhesion of Cardiac Myocytes to Extracellular Matrix Components
,”
Basic Res. Cardiol.
,
80
(
Suppl 1
), pp.
69
74
.
49.
Tan
,
J. L.
,
Tien
,
J.
,
Pirone
,
D. M.
,
Gray
,
D. S.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2003
, “
Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force
,”
Proc. Natl. Acad. Sci. USA
,
100
(
4
), pp.
1484
1489
.10.1073/pnas.0235407100
50.
Sniadecki
,
N. J.
, and
Chen
,
C. S.
,
2007
, “
Microfabricated Silicone Elastomeric Post Arrays for Measuring Traction Forces of Adherent Cells
,”
Methods in Cell Biology: Cell Mechanics
,
Elsevier Inc.
,
San Diego, CA
.
51.
Yu
,
J.
,
Vodyanik
,
M. A.
,
Smuga-Otto
,
K.
,
Antosiewicz-Bourget
,
J.
,
Frane
,
J. L.
,
Tian
,
S.
,
Nie
,
J.
,
Jonsdottir
,
G. A.
,
Ruotti
,
V.
,
Stewart
,
R.
,
Slukvin
,
I.
, and
Thomson
,
J. A.
,
2007
, “
Induced Pluripotent Stem Cell Lines Derived From Human Somatic Cells
,”
Science
,
318
(
5858
), pp.
1917
1920
.10.1126/science.1151526
52.
Laflamme
,
M. A.
,
Chen
,
K. Y.
,
Naumova
,
A. V.
,
Muskheli
,
V.
,
Fugate
,
J. A.
,
Dupras
,
S. K.
,
Reinecke
,
H.
,
Xu
,
C.
,
Hassanipour
,
M.
,
Police
,
S.
,
O'Sullivan
,
C.
,
Collins
,
L.
,
Chen
,
Y.
,
Minami
,
E.
,
Gill
,
E. A.
,
Ueno
,
S.
,
Yuan
,
C.
,
Gold
,
J.
, and
Murry
,
C. E.
,
2007
, “
Cardiomyocytes Derived From Human Embryonic Stem Cells in Pro-Survival Factors Enhance Function of Infarcted Rat Hearts
,”
Nat. Biotechnol.
,
25
(
9
), pp.
1015
1024
.10.1038/nbt1327
53.
Han
,
S. J.
,
Bielawski
,
K. S.
,
Ting
,
L. H.
,
Rodriguez
,
M. L.
, and
Sniadecki
,
N. J.
,
2012
, “
Decoupling Substrate Stiffness, Spread Area, and Micropost Density: A Close Spatial Relationship Between Traction Forces and Focal Adhesions
,”
Biophys. J.
,
103
(
4
), pp.
640
648
.10.1016/j.bpj.2012.07.023
54.
Kresh
,
J. Y.
, and
Chopra
,
A.
,
2011
, “
Intercellular and Extracellular Mechanotransduction in Cardiac Myocytes
,”
Pflugers Arch.
,
462
(
1
), pp.
75
87
.10.1007/s00424-011-0954-1
55.
Parker
,
K. K.
, and
Ingber
,
D. E.
,
2007
, “
Extracellular Matrix, Mechanotransduction and Structural Hierarchies in Heart Tissue Engineering
,”
Philos. Trans. R. Soc., B
,
362
(
1484
), pp.
1267
1279
.
56.
Wu
,
X.
,
Sun
,
Z.
,
Foskett
,
A.
,
Trzeciakowski
,
J. P.
,
Meininger
,
G. A.
, and
Muthuchamy
,
M.
,
2010
, “
Cardiomyocyte Contractile Status Is Associated With Differences in Fibronectin and Integrin Interactions
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
298
(
6
), pp.
H2071
H2081
.
57.
Prowse
,
A. B.
,
Chong
,
F.
,
Gray
,
P. P.
, and
Munro
,
T. P.
,
2011
, “
Stem Cell Integrins: Implications for ex-Vivo Culture and Cellular Therapies
,”
Stem Cell Res.
,
6
(
1
), pp.
1
12
.10.1016/j.scr.2010.09.005
58.
Ross
,
R. S.
, and
Borg
,
T. K.
,
2001
, “
Integrins and the Myocardium
,”
Circ. Res.
,
88
(
11
), pp.
1112
1119
.10.1161/hh1101.091862
59.
Maitra
,
N.
,
Flink
,
I. L.
,
Bahl
,
J. J.
, and
Morkin
,
E.
,
2000
, “
Expression of Alpha and Beta Integrins During Terminal Differentiation of Cardiomyocytes
,”
Cardiovasc. Res.
,
47
(
4
), pp.
715
725
.10.1016/S0008-6363(00)00140-1
60.
Van Laake
,
L. W.
,
Van Donselaar
,
E. G.
,
Monshouwer-Kloots
,
J.
,
Schreurs
,
C.
,
Passier
,
R.
,
Humbel
,
B. M.
,
Doevendans
,
P. A.
,
Sonnenberg
,
A.
,
Verkleij
,
A. J.
, and
Mummery
,
C. L.
,
2010
, “
Extracellular Matrix Formation After Transplantation of Human Embryonic Stem Cell-Derived Cardiomyocytes
,”
Cell. Mol. Life Sci.
,
67
(
2
), pp.
277
290
.10.1007/s00018-009-0179-z
61.
Wang
,
I. N.
,
Wang
,
X.
,
Ge
,
X.
,
Anderson
,
J.
,
Ho
,
M.
,
Ashley
,
E.
,
Liu
,
J.
,
Butte
,
M. J.
,
Yazawa
,
M.
,
Dolmetsch
,
R. E.
,
Quertermous
,
T.
, and
Yang
,
P. C.
,
2012
, “
Apelin Enhances Directed Cardiac Differentiation of Mouse and Human Embryonic Stem Cells
,”
PLoS One
,
7
(
6
),
e38328
.10.1371/journal.pone.0038328
62.
Kita-Matsuo
,
H.
,
Barcova
,
M.
,
Prigozhina
,
N.
,
Salomonis
,
N.
,
Wei
,
K.
,
Jacot
,
J. G.
,
Nelson
,
B.
,
Spiering
,
S.
,
Haverslag
,
R.
,
Kim
,
C.
,
Talantova
,
M.
,
Bajpai
,
R.
,
Calzolari
,
D.
,
Terskikh
,
A.
,
Mcculloch
,
A. D.
,
Price
,
J. H.
,
Conklin
,
B. R.
,
Chen
,
H. S.
, and
Mercola
,
M.
,
2009
, “
Lentiviral Vectors and Protocols for Creation of Stable hESC Lines for Fluorescent Tracking and Drug Resistance Selection of Cardiomyocytes
,”
PLoS One
,
4
(
4
),
e5046
.10.1371/journal.pone.0005046
63.
Sun
,
N.
,
Yazawa
,
M.
,
Liu
,
J.
,
Han
,
L.
,
Sanchez-Freire
,
V.
,
Abilez
,
O. J.
,
Navarrete
,
E. G.
,
Hu
,
S.
,
Wang
,
L.
,
Lee
,
A.
,
Pavlovic
,
A.
,
Lin
,
S.
,
Chen
,
R.
,
Hajjar
,
R. J.
,
Snyder
,
M. P.
,
Dolmetsch
,
R. E.
,
Butte
,
M. J.
,
Ashley
,
E. A.
,
Longaker
,
M. T.
,
Robbins
,
R. C.
, and
Wu
,
J. C.
,
2012
, “
Patient-Specific Induced Pluripotent Stem Cells as a Model for Familial Dilated Cardiomyopathy
,”
Sci. Transl. Med.
,
4
(
130
),
130ra47
.10.1126/scitranslmed.3003552
64.
Lin
,
G.
,
Pister
,
K. S. J.
, and
Roos
,
K. P.
,
2000
, “
Surface Micromachined Polysilicon Heart Cell Force Transducer
,”
J. Microelectromech. Syst.
,
9
(
1
), pp.
9
17
.10.1109/84.825771
65.
Yasuda
,
S. I.
,
Sugiura
,
S.
,
Kobayakawa
,
N.
,
Fujita
,
H.
,
Yamashita
,
H.
,
Katoh
,
K.
,
Saeki
,
Y.
,
Kaneko
,
H.
,
Suda
,
Y.
,
Nagai
,
R.
, and
Sugi
,
H.
,
2001
, “
A Novel Method to Study Contraction Characteristics of a Single Cardiac Myocyte Using Carbon Fibers
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
281
(
3
), pp.
H1442
H1446
.
66.
Granzier
,
H. L.
, and
Irving
,
T. C.
,
1995
, “
Passive Tension in Cardiac Muscle: Contribution of Collagen, Titin, Microtubules, and Intermediate Filaments
,”
Biophys. J.
,
68
(
3
), pp.
1027
1044
.10.1016/S0006-3495(95)80278-X
67.
Kass
,
D. A.
,
Bronzwaer
,
J. G. F.
, and
Paulus
,
W. J.
,
2004
, “
What Mechanisms Underlie Diastolic Dysfunction in Heart Failure?
,”
Circ. Res.
,
94
(
12
), pp.
1533
1542
.10.1161/01.RES.0000129254.25507.d6
68.
Hamdani
,
N.
,
Kooij
,
V.
,
Van Dijk
,
S.
,
Merkus
,
D.
,
Paulus
,
W. J.
,
Dos Remedios
,
C.
,
Duncker
,
D. J.
,
Stienen
,
G. J. M.
, and
Van Der Velden
,
J.
,
2008
, “
Sarcomeric Dysfunction in Heart Failure
,”
Cardiovasc. Res.
,
77
(
4
), pp.
649
658
.10.1093/cvr/cvm079
69.
Shinozawa
,
T.
,
Imahashi
,
K.
,
Sawada
,
H.
,
Furukawa
,
H.
, and
Takami
,
K.
,
2012
, “
Determination of Appropriate Stage of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Screening and Pharmacological Evaluation in Vitro
,”
J. Biomol. Screen
,
17
(
9
), pp.
1192
1203
.10.1177/1087057112449864
70.
Korte
,
F. S.
, and
McDonald
,
K. S.
,
2007
, “
Sarcomere Length Dependence of Rat Skinned Cardiac Myocyte Mechanical Properties: Dependence on Myosin Heavy Chain
,”
J. Physiol.
,
581
(Pt
2
), pp.
725
739
.10.1113/jphysiol.2007.128199
71.
Spach
,
M. S.
,
Heidlage
,
J. F.
,
Barr
,
R. C.
, and
Dolber
,
P. C.
,
2004
, “
Cell Size and Communication: Role in Structural and Electrical Development and Remodeling of the Heart
,”
Heart Rhythm
,
1
(
4
), pp.
500
515
.10.1016/j.hrthm.2004.06.010
72.
Feinberg
,
A. W.
,
Alford
,
P. W.
,
Jin
,
H.
,
Ripplinger
,
C. M.
,
Werdich
,
A. A.
,
Sheehy
,
S. P.
,
Grosberg
,
A.
, and
Parker
,
K. K.
,
2012
, “
Controlling the Contractile Strength of Engineered Cardiac Muscle by Hierarchal Tissue Architecture
,”
Biomaterials
,
33
(
23
), pp.
5732
5741
.10.1016/j.biomaterials.2012.04.043
73.
Lundy
,
S. D.
,
Zhu
,
W. Z.
,
Regnier
,
M.
, and
Laflamme
,
M. A.
,
2013
, “
Structural and Functional Maturation of Cardiomyocytes Derived From Human Pluripotent Stem Cells
,”
Stem Cells Dev.
,
22
(
14
), pp.
1991
2002
.10.1089/scd.2012.0490
74.
Gordon
,
A. M.
,
Homsher
,
E.
, and
Regnier
,
M.
,
2000
, “
Regulation of Contraction in Striated Muscle
,”
Physiol. Rev.
,
80
(
2
), pp.
853
924
.
75.
Campbell
,
K. S.
,
2009
, “
Interactions Between Connected Half-Sarcomeres Produce Emergent Mechanical Behavior in a Mathematical Model of Muscle
,”
PLoS Comput. Biol.
,
5
(
11
),
e1000560
.10.1371/journal.pcbi.1000560
76.
Walker
,
C. A.
, and
Spinale
,
F. G.
,
1999
, “
The Structure and Function of the Cardiac Myocyte: A Review of Fundamental Concepts
,”
J. Thorac. Cardiovasc. Surg.
,
118
(
2
), pp.
375
382
.10.1016/S0022-5223(99)70233-3
77.
Olivetti
,
G.
,
Cigola
,
E.
,
Maestri
,
R.
,
Corradi
,
D.
,
Lagrasta
,
C.
,
Gambert
,
S. R.
, and
Anversa
,
P.
,
1996
, “
Aging, Cardiac Hypertrophy and Ischemic Cardiomyopathy Do Not Affect the Proportion of Mononucleated and Multinucleated Myocytes in the Human Heart
,”
J. Mol. Cell. Cardiol.
,
28
(
7
), pp.
1463
1477
.10.1006/jmcc.1996.0137
You do not currently have access to this content.