With existent biomechanical models of skeletal muscle, challenges still exist in implementing real-time predictions for contraction statuses that are particularly significant to biomechanical and biomedical engineering. Because of this difficulty, this paper proposed a decoupled scheme of the links involved in the working process of a sarcomere and established a semiphenomenological model integrating both linear and nonlinear frames of no higher than a second-order system. In order to facilitate engineering application and cybernetics, the proposed model contains a reduced number of parameters and no partial differential equation, making it highly concise and computationally efficient. Through the simulations of various contraction modes, including isometric, isotonic, successive stretch and release, and cyclic contractions, the correctness and efficiency of the model, are validated. Although this study targets half-sarcomeres, the proposed model can be easily extended to describe the larger-scale mechanical behavior of a muscle fiber or a whole muscle.

References

1.
Hill
,
A.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. Lond. Ser. B
,
126
(
843
), pp.
136
195
.10.1098/rspb.1938.0050
2.
Huxley
,
A. F.
,
1957
, “
Muscle Structure and Theories of Contraction
,”
Prog. Biophys. Biophys. Chem.
,
7
, pp.
255
318
.
3.
Julicher
,
F.
,
Ajdari
,
A.
, and
Prost
,
J.
,
1997
, “
Modeling Molecular Motors
,”
Rev. Mod. Phys.
,
69
(
4
), pp.
1269
1281
.10.1103/RevModPhys.69.1269
4.
Yin
,
Y.
, and
Guo
,
Z.
,
2011
, “
Collective Mechanism of Molecular Motors and a Dynamic Mechanical Model for Sarcomere
,”
Sci. China Technol. Sci.
,
54
(
8
), pp.
2130
2137
.10.1007/s11431-011-4458-1
5.
Fan
,
Y.
, and
Yin
,
Y.
,
2013
, “
Active and Progressive Exoskeleton Rehabilitation Using Multi-Source Information Fusion From EMG and Force & Position-EPP
,”
IEEE Trans. Biomed. Eng.
,
60
(
12
), pp.
3314
3321
.10.1109/TBME.2013.2267741
6.
Neptune
,
R. R.
,
Burnfield
,
J. M.
, and
Mulroy
,
S. J.
,
2007
, “
The Neuromuscular Demands of Toe Walking: A Forward Dynamics Simulation Analysis
,”
J. Biomech.
,
40
(
6
), pp.
1293
1300
.10.1016/j.jbiomech.2006.05.022
7.
Yin
,
Y. H.
,
Fan
,
Y. J.
, and
Xu
,
L. D.
,
2012
, “
EMG and EPP-Integrated Human–Machine Interface Between the Paralyzed and Rehabilitation Exoskeleton
,”
IEEE Trans. Inf. Technol. Biomed.
,
16
(
4
), pp.
542
549
.10.1109/TITB.2011.2178034
8.
Chen
,
X.
, and
Yin
,
Y.
,
2013
, “
A Dynamical System-Markov Model for Active Postsynaptic Responses of Muscle Spindle Afferent Nerve
,”
Chin. Sci. Bull.
,
58
(
6
), pp.
603
612
.10.1007/s11434-012-5562-8
9.
Destexhe
,
A.
,
Mainen
,
Z. F.
, and
Sejnowski
,
T. J.
,
1994
, “
Synthesis of Models for Excitable Membranes, Synaptic Transmission and Neuromodulation Using a Common Kinetic Formalism
,”
J. Comput. Neurosci.
,
1
(
3
), pp.
195
230
.10.1007/BF00961734
10.
Baylor
,
S. M.
, and
Hollingworth
,
S.
,
2011
, “
Calcium Indicators and Calcium Signalling in Skeletal Muscle Fibres During Excitation–Contraction Coupling
,”
Prog. Biophys. Mol. Biol.
,
105
(
3
), pp.
162
179
.10.1016/j.pbiomolbio.2010.06.001
11.
Stern
,
M. D.
,
Pizarro
,
G.
, and
Rios
,
E.
,
1997
, “
Local Control Model of Excitation–Contraction Coupling in Skeletal Muscle
,”
J. Gen. Physiol.
,
110
(
4
), pp.
415
440
.10.1085/jgp.110.4.415
12.
Endo
,
M.
,
2009
, “
Calcium-Induced Calcium Release in Skeletal Muscle
,”
Physiol. Rev.
,
89
(
4
), pp.
1153
1176
.10.1152/physrev.00040.2008
13.
Palmer
,
B. M.
,
Suzuki
,
T.
,
Wang
,
Y.
,
Barnes
,
W. D.
,
Miller
,
M. S.
, and
Maughan
,
D. W.
,
2007
, “
Two-State Model of Acto-Myosin Attachment-Detachment Predicts C-Process of Sinusoidal Analysis
,”
Biophys. J.
,
93
(
3
), pp.
760
769
.10.1529/biophysj.106.101626
14.
Piazzesi
,
G.
, and
Lombardi
,
V.
,
1995
, “
A Cross-Bridge Model That Is Able to Explain Mechanical and Energetic Properties of Shortening Muscle
,”
Biophys. J.
,
68
(
5
), pp.
1966
1979
.10.1016/S0006-3495(95)80374-7
15.
Propp
,
M. B.
,
1986
, “
A Model of Muscle Contraction Based Upon Component Studies
,”
Lect. Math. Life Sci.
,
16
, pp.
61
119
.
16.
Zahalak
,
G. I.
,
2000
, “
The Two-State Cross-Bridge Model of Muscle is an Asymptotic Limit of Multi-State Models
,”
J. Theor. Biol.
,
204
(
1
), pp.
67
82
.10.1006/jtbi.2000.1084
17.
Fan
,
Y.
,
Guo
,
Z.
, and
Yin
,
Y.
,
2011
, “
sEMG-Based Neuro-Fuzzy Controller for a Parallel Ankle Exoskeleton With Proprioception
,”
Int. J. Rob. Autom.
,
26
(
4
), pp.
450
460
.10.2316/Journal.206.2011.4.206-3590
18.
Tsianos
,
G. A.
,
Rustin
,
C.
, and
Loeb
,
G. E.
,
2012
, “
Mammalian Muscle Model for Predicting Force and Energetics During Physiological Behaviors
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
20
(
2
), pp.
117
133
.10.1109/TNSRE.2011.2162851
19.
Iqbal
,
K.
, and
Roy
,
A.
,
2004
, “
Stabilizing Pid Controllers for a Single-Link Biomechanical Model With Position, Velocity, and Force Feedback
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
838
843
.10.1115/1.1824134
20.
Gollee
,
H.
,
Murray-Smith
,
D. J.
, and
Jarvis
,
J. C.
,
2001
, “
A Nonlinear Approach to Modeling of Electrically Stimulated Skeletal Muscle
,”
IEEE Trans. Biomed. Eng.
,
48
(
4
), pp.
406
415
.10.1109/10.915705
21.
Bobet
,
J.
,
Stein
,
R. B.
, and
Oguztoreli
,
M. N.
,
1993
, “
A Linear Time-Varying Model of Force Generation in Skeletal Muscle
,”
IEEE Trans. Biomed. Eng.
,
40
(
10
), pp.
1000
1006
.10.1109/10.247798
22.
Perreault
,
E. J.
,
Heckman
,
C. J.
, and
Sandercock
,
T. G.
,
2003
, “
Hill Muscle Model Errors During Movement Are Greatest Within the Physiologically Relevant Range of Motor Unit Firing Rates
,”
J. Biomech.
,
36
(
2
), pp.
211
218
.10.1016/S0021-9290(02)00332-9
23.
Dorgan
,
S. J.
, and
O'malley
,
M. J.
,
1998
, “
A Mathematical Model for Skeletal Muscle Activated by N-Let Pulse Trains
,”
IEEE Trans. Rehab. Eng.
,
6
(
3
), pp.
286
299
.10.1109/86.712226
24.
Kellermayer
,
M. S.
,
Smith
,
S. B.
,
Granzier
,
H. L.
, and
Bustamante
,
C.
,
1997
, “
Folding–Unfolding Transitions in Single Titin Molecules Characterized With Laser Tweezers
,”
Science
,
276
(
5315
), pp.
1112
1116
.10.1126/science.276.5315.1112
25.
Hatze
,
H.
,
1977
, “
A Myocybernetic Control Model of Skeletal Muscle
,”
Biol. Cybern.
,
25
(
2
), pp.
103
119
.10.1007/BF00337268
26.
Stoecker
,
U.
,
Telley
,
I. A.
,
Stüssi
,
E.
, and
Denoth
,
J.
,
2009
, “
A Multisegmental Cross-Bridge Kinetics Model of the Myofibril
,”
J. Theor. Biol.
,
259
(
4
), pp.
714
726
.10.1016/j.jtbi.2009.03.032
27.
Huxley
,
A. F.
,
1974
, “
Muscular Contraction
,”
J. Physiol.
,
243
(
1
), pp.
1
43
.
28.
Denoth
,
J.
,
Stüssi
,
E.
,
Csucs
,
G.
, and
Danuser
,
G.
,
2002
, “
Single Muscle Fiber Contraction Is Dictated by Inter-Sarcomere Dynamics
,”
J. Theor. Biol.
,
216
(
1
), pp.
101
122
.10.1006/jtbi.2001.2519
29.
Ramírez
,
A.
,
Grasa
,
J.
,
Alonso
,
A.
,
Soteras
,
F.
,
Osta
,
R.
,
Muñoz
,
M.
, and
Calvo
,
B.
,
2010
, “
Active Response of Skeletal Muscle: In Vivo Experimental Results and Model Formulation
,”
J. Theor. Biol.
,
267
(
4
), pp.
546
553
.10.1016/j.jtbi.2010.09.018
30.
Chen
,
X.
,
Yin
,
Y.
, and
Fan
,
Y.
,
2014
, “
EMG Oscillator Model-Based Energy Kernel Method for Characterizing Muscle Intrinsic Property Under Isometric Contraction
,”
Chin. Sci. Bull.
,
59
(
14
), pp.
1556
1567
.10.1007/s11434-014-0147-3
31.
Ishii
,
Y.
,
Nishiyama
,
M.
, and
Yanagida
,
T.
,
2004
, “
Mechano-Chemical Coupling of Molecular Motors Revealed by Single Molecule Measurements
,”
Curr. Protein Pept. Sci.
,
5
(
2
), pp.
81
87
.10.2174/1389203043486838
32.
Lymn
,
R. W.
, and
Taylor
,
E. W.
,
1971
, “
Mechanism of Adenosine Triphosphate Hydrolysis by Actomyosin
,”
Biochemistry
,
10
(
25
), pp.
4617
4624
.10.1021/bi00801a004
33.
Huxley
,
A. F.
, and
Simmons
,
R. M.
,
1971
, “
Proposed Mechanism of Force Generation in Striated Muscle
,”
Nature
,
233
(
5321
), pp.
533
538
.10.1038/233533a0
34.
De Tombe
,
P. P.
, and
Ter Keurs
,
H.
,
1992
, “
An Internal Viscous Element Limits Unloaded Velocity of Sarcomere Shortening in Rat Myocardium
,”
J. Physiol.
,
454
(
1
), pp.
619
642
.
35.
Roots
,
H.
,
Offer
,
G.
, and
Ranatunga
,
K.
,
2007
, “
Comparison of the Tension Responses to Ramp Shortening and Lengthening in Intact Mammalian Muscle Fibres: Crossbridge and Non-Crossbridge Contributions
,”
J. Muscle Res. Cell Motil.
,
28
(
2–3
), pp.
123
139
.10.1007/s10974-007-9110-0
36.
Julian
,
F. J.
, and
Moss
,
R. L.
,
1981
, “
Effects of Calcium and Ionic Strength on Shortening Velocity and Tension Development in Frog Skinned Muscle Fibres
,”
J. Physiol.
,
311
(
1
), pp.
179
199
.
37.
Julian
,
F
.,
1971
, “
The Effect of Calcium on the Force–Velocity Relation of Briefly Glycerinated Frog Muscle Fibres
,”
J. Physiol.
,
218
(
1
), pp.
117
145
.
38.
Meyer
,
G.
,
Lieber
,
R.
, and
Mcculloch
,
A.
,
2011
, “
A Nonlinear Model of Passive Muscle Viscosity
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
091007
.10.1115/1.4004993
39.
Sun
,
Y. B.
,
Hilber
,
K.
, and
Irving
,
M.
,
2001
, “
Effect of Active Shortening on the Rate of ATP Utilisation by Rabbit Psoas Muscle Fibres
,”
J. Physiol.
,
531
(
3
), pp.
781
791
.10.1111/j.1469-7793.2001.0781h.x
40.
Josephson
,
R.
,
1993
, “
Contraction Dynamics and Power Output of Skeletal Muscle
,”
Annu. Rev. Physiol.
,
55
(
1
), pp.
527
546
.10.1146/annurev.ph.55.030193.002523
41.
Josephson
,
R. K.
,
1985
, “
Mechanical Power Output From Striated Muscle During Cyclic Contraction
,”
J. Exp. Biol.
,
114
(
1
), pp.
493
512
.
42.
Ko
,
C.-Y.
,
Chang
,
Y.
,
Kim
,
S.-B.
,
Kim
,
S.
,
Kim
,
G.
,
Ryu
,
J.
, and
Mun
,
M.
,
2014
, “
Linear- and Nonlinear-Electromyographic Analysis of Supracutaneous Vibration Stimuli of the Forearm Using Diverse Frequencies and Considering Skin Physiological Properties
,”
ASME J. Biomech. Eng.
,
136
(
1
), p.
011008
.10.1115/1.4025777
43.
Gordon
,
A. M.
,
Huxley
,
A. F.
, and
Julian
,
F. J.
,
1966
, “
The Variation in Isometric Tension With Sarcomere Length in Vertebrate Muscle Fibres
,”
J. Physiol.
,
184
(
1
), pp.
170
192
.
You do not currently have access to this content.