We present three-dimensional numerical simulations of hydrodynamic interaction between a red blood cell (RBC) and a platelet in a wall-bounded shear flow. The dynamics and large deformation of the RBC are fully resolved in the simulations using a front-tracking method. The objective is to quantify the influence of tank treading and tumbling dynamics of the RBC, and the presence of a bounding wall on the deflection of platelet trajectories. We observe two types of interaction: A crossing event in which the platelet comes in close proximity to the RBC, rolls over it, and continues to move in the same direction; and a turning event in which the platelet turns away before coming close to the RBC. The crossing events occur when the initial lateral separation between the cells is above a critical separation, and the turning events occur when it is below the critical separation. The critical lateral separation is found to be higher during the tumbling motion than that during the tank treading. When the RBC is flowing closer to the wall than the platelet, the critical separation increases by several fold, implying the turning events have higher probability to occur than the crossing events. On the contrary, if the platelet is flowing closer to the wall than the RBC, the critical separation decreases by several folds, implying the crossing events are likely to occur. Based on the numerical results, we propose a mechanism of continual platelet drift from the RBC-rich region of the vessel towards the wall by a succession of turning and crossing events. The trajectory deflection in the crossing events is found to depend nonmonotonically on the initial lateral separation, unlike the monotonic trend observed in tracer particle deflection and in deformable sphere-sphere collision. This nonmonotonic trend is shown to be a consequence of the deformation of the RBC caused by the platelet upon collision. An estimation of the platelet diffusion coefficient yields values that are similar to those reported in experiments and computer simulations with multicellular suspension.

References

1.
Flamm
,
M. H.
, and
Diamond
,
S. L.
,
2012
, “
Multiscale Systems Biology and Physics of Thrombosis Under Flow
,”
Ann. Biomed. Eng.
,
11
, p.
2355
.10.1007/s10439-012-0557-9
2.
Ruggeri
,
Z. M.
, and
Mendolicchio
,
G. L.
,
2007
, “
Adhesion Mechanisms in Platelet Function
,”
Circ. Res.
,
100
, pp.
1673
1685
.10.1161/01.RES.0000267878.97021.ab
3.
Wootton
,
D. M.
, and
Ku
,
D. N.
,
1999
, “
Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis
,”
Ann. Rev. Biomed. Eng.
,
1
, pp.
299
329
.10.1146/annurev.bioeng.1.1.299
4.
Xu
,
C.
, and
Wootton
,
D. M.
,
2004
, “
Platelet Near-Wall Excess in Porcine Whole Blood in Artery-Sized Tubes Under Steady and Pulsatile Flow Conditions
,”
Biorheology
,
41
, pp.
113
125
.
5.
Yeh
,
C.
, and
Eckstein
,
E. C.
,
1994
, “
Transient Lateral Transport of Platelet-Sized Particles in Flowing Blood Suspensions
,”
Biophys. J.
,
66
, pp.
1706
1716
.10.1016/S0006-3495(94)80962-2
6.
Uijttewaal
,
W. S.
,
Nijhof
,
E. J.
,
Bronkhorst
,
P. J.
,
Den Hartog
,
E.
, and
Heethaar
,
R. M.
,
1993
, “
Near-Wall Excess of Platelets Induced by Lateral Migration of Erythrocytes in Flowing Blood
,”
Am. J. Physiol. Heart
,
264
, pp.
H1239
H1244
.
7.
Koleski
,
J. F.
, and
Eckstein
,
E. C.
,
1991
, “
Near Wall Concentration Profiles of 1.0 and 2.5 μm Beads During Flow of Blood Suspensions
,”
Trans. Am. Soc. Artif. Intern. Organs
,
37
, pp.
9
12
.10.1097/00002480-199101000-00004
8.
Eckstein
,
E. C.
,
Koleski
,
J. F.
, and
Waters
,
C. M.
,
1989
, “
Concentration Profiles of 1.0 and 2.5 μm Beads During Blood Flow. Hematocrit Effects
,”
Trans. Am. Soc. Artif. Intern. Organs
,
35
, pp.
188
190
.10.1097/00002480-198907000-00003
9.
Aarts
,
P. A.
,
van den Broek
,
S. A.
,
Prins
,
G. W.
,
Kuiken
,
G. D.
,
Sixma
,
J. J.
, and
Heethaar
,
R. M.
,
1988
, “
Blood Platelets Are Concentrated Near the Wall and Red Blood Cells, in the Center in Flowing Blood
,”
Arteriosclerosis
,
8
, pp.
819
824
.10.1161/01.ATV.8.6.819
10.
Tilles
,
A. W.
, and
Eckstein
,
E. C.
,
1987
, “
The Near-Wall Excess of Platelet-Sized Particles in Blood Flow: Its Dependence on Hematocrit and Wall Shear Rate
,”
Microvasc. Res.
,
33
, pp.
211
223
.10.1016/0026-2862(87)90018-5
11.
Tangelder
,
G. J.
,
Teirlinck
,
H. C.
,
Slaaf
,
D. W.
, and
Reneman
,
R. S.
,
1985
, “
Distribution of Blood Platelets Flowing in Arterioles
,”
Am. J. Physiol.
,
248
(3 Pt 2), pp.
H318
H323
.
12.
Turitto
,
V. T.
, and
Hall
,
C. L.
,
1998
, “
Mechanical Factors Affecting Hemostasis and Thrombosis
,”
Thromb. Res.
,
92
(
Suppl2
), pp.
S25
S31
.10.1016/S0049-3848(98)00157-1
13.
Goldsmith
,
H. L.
,
Bell
,
D. N.
,
Braovac
,
S.
,
Steinberg
,
A.
, and
McIntosh
,
F.
,
1995
, “
Physical and Chemical Effects of Red Cells in the Shear-Induced Aggregation of Human Platelets
,”
Biophys. J.
,
69
, pp.
1584
1595
.10.1016/S0006-3495(95)80031-7
14.
Turitto
,
V. T.
, and
Weiss
,
H. J.
,
1983
, “
Platelet and Red Cell Involvement in Mural Thrombogenesis
,”
Ann. N.Y. Acad. Sci.
,
416
, pp.
363
376
.10.1111/j.1749-6632.1983.tb35199.x
15.
Turitto
,
V. T.
, and
Weiss
,
H. J.
,
1980
, “
Red Blood Cells: Their Dual Role in Thrombus Formation
,”
Science
,
207
, pp.
541
543
.10.1126/science.7352265
16.
Turitto
,
V. T.
, and
Baumgartner
,
H. R.
,
1975
, “
Platelet Interaction With Subendothelium in a Perfusion System: Physical Role of Red Blood Cells
,”
Microvasc. Res.
,
9
, pp.
335
344
.10.1016/0026-2862(75)90070-9
17.
Eckstein
,
E. C.
,
Blisker
,
D. L.
,
Waters
,
C. M.
,
Kippenhan
,
J. S.
, and
Tilles
,
A. W.
,
1987
, “
Transport of Platelets in Flowing Blood
,”
Ann. N.Y. Acad. Sci.
,
516
, pp.
442
452
.10.1111/j.1749-6632.1987.tb33065.x
18.
Aarts
,
P. A. M. M.
,
Heethaar
,
R. M.
, and
Sixma
,
J. J.
,
1984
, “
Red Blood Cell Deformability Influences Platelets-Vessel Wall Interaction in Flowing Blood
,”
Blood
,
64
(6), pp.
1228
1233
.
19.
Goldsmith
,
H. L.
,
1971
, “
Red Cell Motions and Wall Interactions in Tube Flow
,”
Fed. Proc.
30
(5), pp.
1578
1590
.
20.
Eckstein
,
E. C.
, and
Belgacem
,
F.
,
1991
, “
Model of Platelet Transport in Flowing Blood With Drift and Diffusion Terms
,”
Biophys. J.
,
60
, pp.
53
69
.10.1016/S0006-3495(91)82030-6
21.
Turitto
,
V. T.
,
Benis
,
A. M.
, and
Leonard
,
E. F.
,
1972
, “
Platelet Diffusion in Flowing Blood
,”
Ind. Eng. Chem. Fundam.
,
11
, pp.
216
223
.10.1021/i160042a012
22.
Antonini
,
G.
,
Guiffant
,
G.
,
Quemada
,
D.
, and
Dosne
,
A. M.
,
1978
, “
Estimation of Platelet Diffusivity in Flowing Blood
,”
Biorheology
,
15
, pp.
111
117
.
23.
Diller
,
T. E.
,
1988
, “
Comparison of Red Cell Augmented Diffusion and Platelet Transport
,”
J. Biomech. Eng.
,
110
, pp.
161
163
.10.1115/1.3108422
24.
Kim
,
S. P.
,
Ong
,
K.
,
Yalcin
,
O.
,
Intaglietta
,
M.
, and
Johnson
,
P. C.
,
2009
, “
The Cell-Free Layer in Microvascular Blood Flow
,”
Biorheology
,
46
, pp.
181
189
.10.3233/BIR-2009-0530
25.
Tokarev
,
A. A.
,
Butylin
,
A. A.
,
Ermakova
,
E. A.
,
Shnol
,
E. E.
,
Panasenko
,
G. P.
, and
Ataullakhanov
,
F. I.
,
2011
, “
Finite Platelet Size Could Be Responsible for Platelet Margination Effect
,”
Biophys. J.
,
101
, pp.
1835
1843
.10.1016/j.bpj.2011.08.031
26.
Tokarev
,
A. A.
,
Butylin
,
A. A.
, and
Ataullakhanov
,
F. I.
,
2011
, “
Platelet Adhesion From Shear Blood Flow Is Controlled by Near-Wall Rebounding Collisions With Erythrocytes
,”
Biophys. J.
,
100
, pp.
799
808
.10.1016/j.bpj.2010.12.3740
27.
Fischer
,
T. M.
,
Stohr-Liesen
,
M.
, and
Schmid-Schonbein
,
H.
,
1978
, “
The Red Cell As a Fluid Droplet: Tank-Tread Like Motion of the Human Erythrocyte Membrane in Shear Flow
,”
Science
,
202
, p.
894
.10.1126/science.715448
28.
Keller
,
S. R.
, and
Skalak
,
R.
,
1982
, “
Motion of a Tank-Treading Ellipsoidal Particle in a Shear Flow
,”
J. Fluid Mech.
,
120
, pp.
27
47
.10.1017/S0022112082002651
29.
Abkarian
,
M.
,
Faivre
,
M.
, and
Viallat
,
A.
,
2007
, “
Swinging of Red Blood Cells Under Shear Flow
,”
Phys. Rev. Lett.
,
98
, p.
188302
.10.1103/PhysRevLett.98.188302
30.
Skotheim
,
J. M.
, and
Secomb
,
T. W.
,
2007
, “
Oscillatory Dynamics and the Tank-Treading-to-Tumbling Transition
,”
Phys. Rev. Lett.
,
98
, p.
078301
.10.1103/PhysRevLett.98.078301
31.
Sui
,
Y.
,
Chew
,
Y. T.
,
Roy
,
P.
Cheng
,
Y. P.
, and
Low
,
H. T.
,
2008
, “
Dynamic Motion of Red Blood Cells in Simple Shear Flow
,”
Phys. Fluids
,
20
, p.
112106
.10.1063/1.3026569
32.
AlMomani
,
T. H.
,
Udaykumar
,
S.
,
Marshall
,
J. S.
, and
Chandran.
K. B.
,
2008
, “
Micro-Scale Dynamic Simulation of Erythrocyte-Platelet Interaction in Blood Flow
,”
Ann. Biomed. Eng.
,
36
, pp.
905
920
.10.1007/s10439-008-9478-z
33.
Crowl
,
L. M.
, and
Fogelson
,
A. L.
,
2010
, “
Computational Model of Whole Blood Exhibiting Lateral Platelet Motion Induced by Red Blood Cells
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
, pp.
471
487
.10.1002/cnm.1274
34.
Crowl
,
L. M.
, and
Fogelson
,
A. L.
,
2011
, “
Analysis of Mechanisms for Platelet Near-Wall Excess Under Arterial Blood Flow Conditions
,”
J. Fluid Mech.
,
676
, pp.
348
375
.10.1017/jfm.2011.54
35.
Zhao
,
H.
, and
Shaqfeh
,
E. S. G.
,
2011
, “
Shear-Induced Platelet Margination in a Microchannel
,”
Phys. Rev. E
,
83
, p.
061924
.10.1103/PhysRevE.83.061924
36.
Zhao
,
H. E.
,
Shaqfeh
,
S. G.
, and
Narsimhan
,
V.
,
2012
, “
Shear-Induced Particle Migration and Margination in a Cellular Suspension
,”
Phys. Fluids
,
24
, p.
011902
.10.1063/1.3677935
37.
Le
,
D.-V.
, and
Chiam
,
K.-H.
,
2011
, “
Hydrodynamic Interaction Between Two Nonspherical Capsules in Shear Flow
,”
Phys. Rev. E
,
84
, p.
056322
.10.1103/PhysRevE.84.056322
38.
Mody
,
N. A.
, and
King
,
M. R.
,
2008
, “
Platelet Adhesive Dynamics. Part I: Characterization of Platelet Hydrodynamic Collisions and Wall Effects
,”
Biophys. J.
,
95
, pp.
2539
2555
.10.1529/biophysj.107.127670
39.
Mody
,
N. A.
, and
King
,
M. R.
,
2008
, “
Platelet Adhesive Dynamics. Part II: High Shear-Induced Transient Aggregation Via GPIba-vWF-GPIba Bridging
,”
Biophys. J.
,
95
, pp.
2556
2574
.10.1529/biophysj.107.128520
40.
Peskin
,
C.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numerica
,
11
, pp.
1
39
.10.1017/S0962492902000077
41.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Al Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y.
,
2001
, “
A Front–Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
,
169
, pp.
708
759
.10.1006/jcph.2001.6726
42.
Doddi
,
S. K.
, and
Bagchi
,
P.
,
2008
, “
Lateral Migration of a Capsule in a Plane Poiseuille Flow in a Channel
Int. J. Multiphase Flow
,
34
, pp.
966
986
.10.1016/j.ijmultiphaseflow.2008.03.002
43.
Doddi
,
S. K.
, and
Bagchi
,
P.
,
2009
, “
Three-Dimensional Computational Modeling of Multiple Deformable Cells Flowing in Microvessels
Phys. Rev. E
,
79
,
p. 046318
.10.1103/PhysRevE.79.046318
44.
Yazdani
,
A.
, and
Bagchi
,
P.
,
2012
, “
Three-Dimensional Numerical Simulation of Vesicle Dynamics Using a Front-Tracking Method
,”
Phys. Rev. E
,
85
, p.
056308
.10.1103/PhysRevE.85.056308
45.
Fung
,
Y. C.
,
1993
,
‘Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
.
46.
Skalak
,
R.
,
Tozeren
,
A.
,
Zarda
,
P. R.
, and
Chien
,
S.
,
1973
, “
Strain Energy Function of Red Blood Cell Membrane
,”
Biophys. J.
,
13
, p.
245
.10.1016/S0006-3495(73)85983-1
47.
Helfrich
,
W.
,
1973
, “
Elastic Properties of Lipid Bilayers: Theory and Possible Experiments
,”
Z. Naturforsch. Teil C
,
28
(11), pp.
693
703
.
48.
Zhong-can
,
O.-Y.
, and
Helfrich
,
W.
,
1989
, “
Bending Energy of Vesicle Membranes: General Expressions for the First, Second, and Third Variation of the Shape Energy and Applications to Spheres and Cylinders
,”
Phys. Rev. A
,
39
, pp.
5280
5288
.10.1103/PhysRevA.39.5280
49.
Shrivastava
,
S.
, and
Tang
,
J.
,
1993
, “
Large Deformation Finite Element Analysis of Non-Linear Viscoelastic Membranes With Reference to Thermoforming
,”
J. Strain Anal.
,
28
, p.
31
.10.1243/03093247V281031
50.
Yazdani
,
A. Z. K.
, and
Bagchi
,
P.
,
2011
, “
Phase Diagram and Breathing Dynamics of a Single Red Blood Cell and a Biconcave Capsule in Dilute Shear Flow
,”
Phys. Rev. E
,
84
, p.
026314
.10.1103/PhysRevE.84.026314
51.
Fischer
,
T.
, and
Schmid-Schonbein
,
H.
,
1977
, “
Tank Tread Motion of Red Cell Membranes in Viscometric Flow: Behavior of Intracellular and Extracellular Markers (With Film)
,”
Blood Cells
,
3
, pp.
351
365
.
52.
Fischer
,
T. A.
,
1978
, “
Comparison of the Flow Behavior of Disc Shaped Versus Elliptic Red Blood Cells (RBC)
,”
Blood Cells
,
4
, pp.
453
461
.
53.
Secomb
,
T. W.
,
Hsu
,
R.
, and
Pries
,
A. R.
,
1998
, “
A Model for Red Blood Cell Motion in Glycocalyx-Lined Capillaries
,”
Am. J. Physiol.
,
274
, pp.
H1016
H1022
.
54.
Jeffery
,
G. B.
,
1922
, “
The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid
,”
Proc. R. Soc. London Ser. A
,
102
, pp.
161
170
.10.1098/rspa.1922.0078
55.
Lac
,
E.
,
Morel
,
A.
, and
Barthes-Biesel
,
D.
,
2007
, “
Hydrodynamic Interaction Between Two Identical Capsules in Simple Shear Flow
,”
J. Fluid Mech.
,
573
, pp.
149
169
.10.1017/S0022112006003739
56.
Loewenberg
,
M.
, and
Hinch
,
E. J.
,
1997
, “
Collision of Two Deformable Drops in Shear Flow
,”
J. Fluid Mech.
,
338
, pp.
299
315
.10.1017/S0022112097005016
57.
Zurita-Gotor
,
M.
,
Blawzdziewicz
,
J.
, and
Wajnryb
,
E.
,
2007
, “
Swapping Trajectories: A New Wall-Induced Cross-Streamline Particle Migration Mechanism in a Dilute Suspension of Spheres
,”
J. Fluid Mech.
,
592
, pp.
447
469
.10.1017/S0022112007008701
58.
Li
,
X.
, and
Sarkar
,
K.
,
2009
, “
Pairwise Interactions Between Deformable Drops in Free Shear at Finite Inertia
,”
Phys. Fluids
,
21
, p.
063302
.10.1063/1.3153905
59.
Forsyth
,
A. M.
,
Wan
,
J.
,
Owrutsky
,
P. D.
,
Abkarian
,
M.
, and
Stone
,
H. A.
,
2011
, “
Multiscale Approach to Link Red Blood Cell Dynamics, Shear Viscosity, and ATP Release
,”
Proc Natl. Acad. Sci. U.S.A.
,
108
, pp.
10986
10991
.10.1073/pnas.1101315108
60.
Leone
,
G.
,
Sica
,
S.
,
Chiusolo
,
P.
,
Teofili
,
L.
, and
De Stefano
,
V.
,
2001
, “
Blood Cell Diseases and Thrombosis
,”
Haematologic
,
86
, pp.
1236
1244
.
61.
Goldsmith
,
H. L.
, and
Turitto
,
V. T.
,
1986
, “
Rheological Aspects of Thrombosis and Hemostasis: Basic Principles and Applications. ICTH-Report 781 Subcommittee on Rheology of the International Committee on Thrombosis and 782 Hemostasis
,”
Thromb. Haemost.
,
55
(3), pp.
415
435
.
You do not currently have access to this content.