This paper presents a theoretical analysis based on classic mechanical principles of balance of forces in bipedal walking. Theories on the state of balance have been proposed in the area of humanoid robotics and although the laws of classical mechanics are equivalent to both humans and humanoid robots, the resulting motion obtained with these theories is unnatural when compared to normal human gait. Humanoid robots are commonly controlled using the zero moment point (ZMP) with the condition that the ZMP cannot exit the foot-support area. This condition is derived from a physical model in which the biped must always walk under dynamically balanced conditions, making the centre of pressure (CoP) and the ZMP always coincident. On the contrary, humans follow a different strategy characterized by a ‘controlled fall’ at the end of the swing phase. In this paper, we present a thorough theoretical analysis of the state of balance and show that the ZMP can exit the support area, and its location is representative of the imbalance state characterized by the separation between the ZMP and the CoP. Since humans exhibit this behavior, we also present proof-of-concept results of a single subject walking on an instrumented treadmill at different speeds (from slow 0.7 m/s to fast 2.0 m/s walking with increments of 0.1 m/s) with the motion recorded using an optical motion tracking system. In order to evaluate the experimental results of this model, the coefficient of determination (R2) is used to correlate the measured ground reaction forces and the resultant of inertial and gravitational forces (anteroposterior R2 = 0.93, mediolateral R2 = 0.89, and vertical R2 = 0.86) indicating that there is a high correlation between the measurements. The results suggest that the subject exhibits a complete dynamically balanced gait during slow speeds while experiencing a controlled fall (end of swing phase) with faster speeds. This is quantified with the root-mean-square deviation (RMSD) between the CoP and the ZMP, a relationship that grows exponentially, suggesting that the ZMP exits the support area earlier with faster walking speeds (relative to the stride duration). We conclude that the ZMP is a significant concept that can be exploited for the analysis of bipedal balance, but we also challenge the control strategy adopted in humanoid robotics that forces the ZMP to be contained within the support area causing the robot to follow unnatural patterns.

References

1.
Perry
,
J.
, and
Burnfield
,
J. M.
,
2010
,
Gait Analysis: Normal and Pathological Function
, 2nd ed.,
Slack Inc.
,
Thorofare, NJ
.
2.
Zatsiorsky
,
V. M.
,
1998
, Kinematics of Human Motion. Human Kinetics,
Windsor, ON
.
3.
Peterka
,
R. J.
,
2009
, “
Comparison of Human and Humanoid Robot Control of Upright Stance
,”
J. Physiol. Paris
,
103
(
3–5
), pp.
149
158
.10.1016/j.jphysparis.2009.08.001
4.
Vukobratovic
,
M.
, and
Borovac
,
B.
,
2004
, “
Zero-Moment Point –Thirty fFive yYears of its lLife
,”
Int. J. Humanoid Robotics
,
11
(
1
), pp.
157
173
.10.1142/S0219843604000083
5.
Hyung
,
J. K.
,
Wang
,
Q.
,
Rahmatalla
,
S.
,
Swan
,
C. C.
,
Arora
,
J. S.
,
Abdel-Malek
,
K.
, and
Assouline
,
J. G.
,
2008
, “
Dynamic Motion Planning of 3D Human Locomotion Using Gradient-Based Optimization
,”
J. Biomech. Eng.
,
130
(
3
), p.
031002
.10.1115/1.2898730
6.
Firmani
,
F.
, and
Park
,
E. J.
,
2012
, “
A Framework for the Analysis and Synthesis of 3D Dynamic Human Gait
,”
Robotica
,
30
(
1
), pp.
145
157
.10.1017/S0263574711000440
7.
Huang
,
Q.
,
Yokoi
,
K.
,
Kajita
,
S.
,
Kaneko
,
K.
,
Arai
,
H.
,
Koyachi
,
N.
, and
Tanie
,
K.
,
2001
, “
Planning Walking Patterns for a Biped Robot
,”
IEEE Trans. Rob. Autom.
,
17
(
3
), pp.
280
289
.10.1109/70.938385
8.
Dasgupta
,
A.
, and
Nakamura
,
Y.
,
1999
, “
Making Feasible Walking Motion of Humanoid Robots From Human Motion Capture Data
,”
IEEE International Conference on Robotics and Automation
, Vol. 2, pp.
1044
1049
.
9.
Margaria
,
R.
,
1938
, “
Sulla Fisiologia e Specialmente Sul Consumo Energetico Della Marcia e Della Corsa a Varie Velocita ed Inclinazioni del Terreno
,”
Atti Accad. Naz. Lincei Mem.
,
7
, pp.
299
368
.
10.
Ralston
,
H. J.
,
1958
, “
Energy-Speed Relation and Optimal Speed During Level Walking
,”
Int. Z. Angew. Physiol.
,
17
(
4
), pp.
277
283
.10.1007/BF00698754
11.
Cotes
,
J. E.
, and
Meade
,
F.
,
1960
, “
The Energy Expenditure and Mechanical Energy Demand in Walking
,”
Ergonomics
,
3
(
2
), pp.
97
119
.10.1080/00140136008930473
12.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
62
82
.10.1177/027836499000900206
13.
Vukobratovic
,
M.
,
Borovac
,
B.
, and
Potkonjak
,
V.
,
2007
, “
Towards a Unified Understanding of Basic Notions and Terms in Humanoid Robotics
,”
Robotica
,
25
(
1
), pp.
87
101
.10.1017/S0263574706003031
14.
Winter
,
D. A.
,
Prince
,
F.
,
Frank
,
J. S.
,
Powell
,
C.
, and
Zabjek
,
K. F.
,
1996
, “
Unified Theory Regarding A/P and M/L Balance in Quiet Stance
,”
J. Neurophysiol.
,
75
(
6
), pp.
2334
2343
.10.1007/BF00698754
15.
Corriveau
,
H.
,
Hebert
,
R.
,
Prince
,
F.
, and
Raiche
,
M.
,
2000
, “
Intrasession Reliability of the ‘‘Center of Pressure Minus Center of Mass'’ Variable of Postural Control in the Healthy Elderly
,”
Arch. Phys. Med. Rehabil.
,
81
(
1
), pp.
45
48
.10.1016/S0003-9993(00)90220-X
16.
Masani
,
K.
,
Vette
,
A. H.
,
Kouzaki
,
M.
,
Kanehisa
,
H.
,
Fukunaga
,
T.
, and
Popovic
,
M. R.
,
2007
, “
Larger Center of Pressure Minus Center of Gravity in the Elderly Induces Larger Body Acceleration During Quiet Standing
,”
Neurosci. Lett.
,
422
(
3
), pp.
202
206
.10.1016/j.neulet.2007.06.019
17.
Popovic
,
M. B.
,
Goswami
,
A.
, and
Herr
,
H.
,
2005
, “
Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications
,”
Int. J. Robot. Res.
,
24
(
12
), pp.
1013
1032
.10.1177/0278364905058363
18.
Herr
,
H.
, and
Popovic
,
M. B.
,
2008
, “
Angular Momentum in Human Walking
,”
J. Exp. Biol.
,
211
(
4
), pp.
467
481
.10.1242/jeb.008573
19.
Goswami
,
A.
,
1999
, “
Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point
,”
Int. J. Robot. Res.
,
18
(
6
), pp.
523
533
.10.1177/02783649922066376
20.
Popovic
,
M. B.
, and
Herr
,
H.
,
2006
, “
Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications
,”
Mobile Robots: Towards New Applications
,
A.
Lazinica
, ed.,
InTech, Germany
, pp.
79
104
.
21.
McConville
,
J. T.
,
Churchill
,
T. D.
,
Kaleps
, I
.
,
Clauser
,
C. E.
, and
Cuzzi
,
J.
,
1980
,
Anthropometric Relationships of Body and Body Segment Moments of Inertia, Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH
, Tech. Rep. AFAMRL-TR-80-119.
22.
Young
,
J. W.
,
Chandler
,
R. F.
,
Snow
,
C. C.
,
Robinette
,
K. M.
,
Zehner
,
G. F.
, and
Lofberg
,
M. S.
,
1983
, “
Anthropometric and Mass Distribution Characteristics of the Adults Female
,”, FAA Civil Aeromedical Institute, Oklaoma City OK, Tech. Rep. FA-AM-83-16.
23.
Dumas
,
R.
,
Cheze
,
L.
, and
Verriest
,
J. P.
,
2007
, “
Adjustments to McConville et al. and Young et al., Body Segment Inertial Parameters
,”
J. Biomech.
,
40
(
3
), pp.
543
553
.10.1016/j.jbiomech.2006.02.013
24.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D'Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
, I
.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
25.
Wu
,
G.
,
Van Der Helm
,
F. C.
,
Veeger
,
H. E.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
26.
Craig
,
J. J.
,
2004
,
Introduction to Robotics: Mechanics and Control
, 3rd. ed.,
Englewood Cliffs
,
NJ
.
27.
Winter
,
D.
,
2009
,
Biomechanics and Motor Control of Human Movement
, 4th ed.,
Wiley
,
New York
.
28.
Ginsberg
,
J. H.
,
1995
,
Advanced Engineering Dynamics
, 2nd ed.,
Cambridge University
,
Cambridge, England
.
29.
Vukobratovic
,
M.
, and
Stepanenko
,
J.
,
1972
, “
On the Stability of Anthropomorhpic Systems
,”
Math. Biosci.
,
15
(
1–2
), pp.
1
37
.10.1016/0025-5564(72)90061-2
30.
Goswami
,
A.
and
Kallem
, V
.
,
2004
, “
Rate of Change of Angular Momentum and Balance Maintenance of Biped Robots
,”
IEEE J. Rob. Autom.
,
4
, pp.
3785
3790
.10.1109/ROBOT.2004.1308858
31.
Sardain
,
P.
, and
Bessonnet
,
G.
,
2004
, “
Forces aActing on a bBiped rRobot. Center of Pressure-Zero Moment Point
,”
IEEE Trans. Syst., Man, Cybern. Part A. Syst. Humans.
,
34
(
5
), pp.
630
637
.10.1109/TSMCA.2004.832811
32.
Vukobratovic
,
M.
,
Borovac
,
B.
, and
Surdilovic
,
D.
,
2001
, “
Zero-Moment Point-Proper Interpretation and New Applications
,”
IEEE-RAS Int. Conf. Humanoid Robots
, pp.
237
244
.
33.
Hirai
,
K.
,
Hirose
,
M.
,
Haikawa
,
Y.
, and
Takenaka
,
T.
,
1998
, “
The Development of Honda Humanoid Robot
,”
Proc. 1998 IEEE Int. Conf. on Robotics and Automation
,
2
, pp.
1321
1326
.10.1109/ROBOT.1998.677288
34.
Elftman
,
H.
,
1939
, “
The Function of the Arms in Walking
,”
Human Biol.
,
11
, pp.
529
535
.
35.
Popovic
,
M. B.
,
Englehart
,
A.
, and
Herr
,
H.
,
2004
, “
Angular Momentum Primitives for Human Walking: Biomechanics and Control
,”
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
,
2
, pp.
1685
1691
.10.1109/IROS.2004.1389638
36.
Robert
,
T.
,
Bennett
,
B. C.
,
Russell
,
S. D.
,
Zirker
,
C. A.
, and
Abel
,
M. F.
,
2009
, “
Angular Momentum Synergies During Walking
,”
Exp. Brain Res.
,
197
(
2
), pp.
185
197
.10.1007/s00221-009-1904-4
37.
Bennett
,
B. C.
,
Russell
,
S. D.
,
Sheth
,
P.
, and
Abel
,
M. F.
,
2010
, “
Angular Momentum of Walking at Different Speeds
,”
Hum. Mov. Sci.
,
29
(
1
), pp.
114
124
.10.1016/j.humov.2009.07.011
39.
Nilsson
,
J.
,
Thorstensson
,
A.
, and
Halbertsma
,
J.
,
1985
, “
Changes in Leg Movements and Muscle Activity With Speed of Locomotion and Mode of Progression in Humans
,”
Acta Physiol. Scand.
,
123
(
4
), pp.
457
475
.10.1111/j.1748-1716.1985.tb07612.x
40.
Cappellini
,
G.
,
Ivanenko
,
Y. P.
,
Poppele
,
R. E.
, and
Lacquaniti
,
F.
,
2006
. “
Motor Patterns in Human Walking and Running
,”
J. Neurophysiol.
,
95
(
6
), pp.
3426
3437
.10.1152/jn.00081.2006
41.
Hirasaki
,
E.
,
Moore
,
S. T.
,
Raphan
,
T.
, and
Cohen
,
B.
,
1999
, “
Effects of Walking Velocity on Vertical Head and Body Movements During Locomotion
,”
Exp. Brain Res.
,
127
(
2
), pp.
117
130
.10.1007/s002210050781
42.
Stoquart
,
G.
,
Detrembleur
,
C.
, and
Lejeune
,
T.
,
2008
, “
Effect of Speed on Kinematic, Kinetic, Electromyographic and Energetic Reference Values During Treadmill Walking
,”
Clin. Neurophysiol.
,
38
(
2
), pp.
105
116
.10.1016/j.neucli.2008.02.002
43.
Ren
,
L.
,
Jones
,
R. K.
, and
Howard
,
D.
,
2008
, “
Whole Body Inverse Dynamics Over a Complete Gait Cycle Based Only on Measured Kinematics
,”
J. Biomech.
,
41
(
12
), pp.
2750
2759
.10.1016/j.jbiomech.2008.06.001
44.
Maki
,
B. E.
, and
McIlroy
,
W. E.
,
1997
, “
The Role of Limb Movements in Maintaining Upright Stance: The ‘Change-in-Support’ Strategy
,”
Phys. Ther.
,
77
(
5
), pp.
488
507
.
45.
Raibert
,
M.
,
2010
, “
Dynamic Legged Robots for Rough Terrain
,”
IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids
2010
).
46.
Kazerooni
,
H.
,
Steger
,
R.
, and
Huang
,
L.
,
2006
. “
Hybrid Control of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
Int. J. Robotics Res.
,
25
(
5–6
), pp.
561
573
.10.1177/0278364906065505
47.
Jacobsen
,
S. C.
,
Olivier
,
M.
,
Smith
,
F. M.
,
Knutti
,
D. F.
,
Johnson
,
R. T.
,
Colvin
,
G. E.
, and
Scroggin
,
W. B.
,
2004
, “
Research Robots for Applications in Artificial Intelligence, Teleoperation and Entertainment
,”
Int. J. Robotics Res.
,
23
(
4–5
), pp.
319
340
.10.1177/0278364904042198
48.
Sankai
,
Y.
,
2006
, “
Leading Edge of Cybernics: Robot Suit Hal
,”
SICE-ICCAS 2006 International Joint Conference
, pp.
27
28
.
49.
Kong
,
K.
, and
Jeon
,
D.
,
2006
, “
Design and Control of an Exoskeleton for the Elderly and Patients
,”
IEEE/ASME Trans. Mechatron.
,
11
(
4
), pp.
428
432
.10.1109/TMECH.2006.878550
50.
Baker
,
B.
,
2008
, “
Walk of Life
,”
Engineer
,
293
(
7750
), pp.
30
31
.
51.
Mertz
,
L.
,
2012
, “
The Next Generation of Exoskeletons: Lighter, Cheaper Devices are in the Works
,”
IEEE Pulse
,
3
(
4
), pp.
56
61
.10.1109/MPUL.2012.2196836
52.
Quintero
,
H.
,
Farris
,
R.
, and
Goldfarb
,
M.
,
2011
, “
Control and Implementation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals
,”
Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on
, pp.
1
6
.
You do not currently have access to this content.