The concept of semi-rigid fixation (SRF) has driven the development of spinal implants that utilize nonmetallic materials and novel rod geometries in an effort to promote fusion via a balance of stability, intra- and inter-level load sharing, and durability. The purpose of this study was to characterize the mechanical and biomechanical properties of a pedicle screw-based polyetheretherketone (PEEK) SRF system for the lumbar spine to compare its kinematic, structural, and durability performance profile against that of traditional lumbar fusion systems. Performance of the SRF system was characterized using a validated spectrum of experimental, computational, and in vitro testing. Finite element models were first used to optimize the size and shape of the polymeric rods and bound their performance parameters. Subsequently, benchtop tests determined the static and dynamic performance threshold of PEEK rods in relevant loading modes (flexion-extension (F/E), axial rotation (AR), and lateral bending (LB)). Numerical analyses evaluated the amount of anteroposterior column load sharing provided by both metallic and PEEK rods. Finally, a cadaveric spine simulator was used to determine the level of stability that PEEK rods provide. Under physiological loading conditions, a 6.35 mm nominal diameter oval PEEK rod construct unloads the bone-screw interface and increases anterior column load (approx. 75% anterior, 25% posterior) when compared to titanium (Ti) rod constructs. The PEEK construct’s stiffness demonstrated a value lower than that of all the metallic rod systems, regardless of diameter or metallic composition (78% < 5.5 mm Ti; 66% < 4.5 mm Ti; 38% < 3.6 mm Ti). The endurance limit of the PEEK construct was comparable to that of clinically successful metallic rod systems (135N at 5 × 106 cycles). Compared to the intact state, cadaveric spines implanted with PEEK constructs demonstrated a significant reduction of range of motion in all three loading directions (> 80% reduction in F/E, p < 0.001; > 70% reduction in LB, p < 0.001; > 54% reduction in AR, p < 0.001). There was no statistically significant difference in the stability provided by the PEEK rods and titanium rods in any mode (p = 0.769 for F/E; p = 0.085 for LB; p = 0.633 for AR). The CD HORIZON® LEGACY PEEK Rod System provided intervertebral stability comparable to currently marketed titanium lumbar fusion constructs. PEEK rods also more closely approximated the physiologic anteroposterior column load sharing compared to results with titanium rods. The durability, stability, strength, and biomechanical profile of PEEK rods were demonstrated and the potential advantages of SRF were highlighted.

References

1.
Bono
,
C. M.
and
Lee
,
C. K.
, 2004, “
Critical Analysis of Trends in Fusion for Degenerative Disc Disease Over the Past 20 Years: Influence of Technique on Fusion Rate and Clinical Outcome
,”
Spine
,
29
(
4
), pp.
455
463
; discussion Z455.
2.
Burkus
,
J. K.
,
Gornet
,
M. F.
,
Dickman
,
C. A.
, and
Zdeblick
,
T. A.
, 2002, “
Anterior Lumbar Interbody Fusion Using Rhbmp-2 With Tapered Interbody Cages
,”
J. Spinal Disord. Tech
,
15
(
5
), pp.
337
349
.
3.
Fritzell
,
P.
,
Hägg
,
O.
,
Wessberg
,
P.
, and
Swedish Lumbar Spine Study Group
, 2001, “
2001 Volvo Award Winner in Clinical Studies: Lumbar Fusion Versus Nonsurgical Treatment for Chronic Low Back Pain: A Multicenter Randomized Controlled Trial From the Swedish Lumbar Spine Study Group
,”
Spine
,
26
(
23
), pp.
2521
2532
; discussion 2532–2534.
4.
Polly
,
D. W.
, Jr.
,
Santos
,
E. R.
, and
Mehbod
,
A. A.
, 2005, “
Surgical Treatment for the Painful Motion Segment: Matching Technology With the Indications: Posterior Lumbar Fusion
,”
Spine
,
30
(
16 Suppl
), pp.
S44
51
.
5.
Slosar
,
P. J.
, 2002, “
Indications and Outcomes of Reconstructive Surgery in Chronic Pain of Spinal Origin
,”
Spine
,
27
(
22
), pp.
2555
2562
; discussion 2563.
6.
Zdeblick
,
T. A.
, 1995, “
The Treatment of Degenerative Lumbar Disorders. A Critical Review of the Literature
,”
Spine
,
20
(
24
Suppl), pp.
126S
137S
.
7.
Farey
,
I. D.
,
McAfee
,
P. C.
,
Gurr
,
K. R.
, and
Randolph
,
M. A.
, 1989, “
Quantitative Histologic Study of the Influence of Spinal Instrumentation on Lumbar Fusions: A Canine Model
,”
J. Orthop. Res.
,
7
(
5
), pp.
709
722
.
8.
Kanayama
,
M.
,
Cunningham
,
B. W.
,
Sefter
,
J. C.
,
Goldstein
,
J. A.
,
Stewart
,
G.
,
Kaneda
,
K.
, and
McAfee
,
P. C.
, 1999, “
Does Spinal Instrumentation Influence the Healing Process of Posterolateral Spinal Fusion? An In Vivo Animal Model
,”
Spine
,
24
(
11
), pp.
1058
1065
.
9.
Kotani
,
Y.
,
Cunningham
,
B. W.
,
Cappuccino
,
A.
,
Kaneda
,
K.
, and
McAfee
,
P. C.
, 1996, “
The Role of Spinal Instrumentation in Augmenting Lumbar Posterolateral Fusion
,”
Spine
,
21
(
3
), pp.
278
287
.
10.
Lorenz
,
M.
,
Zindrick
,
M.
,
Schwaegler
,
P.
,
Vrbos
,
L.
,
Collatz
,
M. A.
,
Behal
,
R.
, and
Cram
,
R.
, 1991, “
A Comparison of Single-Level Fusions With and Without Hardware
,”
Spine
,
16
(
8 Suppl
), pp.
S455
458
.
11.
Schwab
,
F. J.
,
Nazarian
,
D. G.
,
Mahmud
,
F.
, and
Michelsen
,
C. B.
, 1995, “
Effects of Spinal Instrumentation on Fusion of the Lumbosacral Spine
,”
Spine
,
20
(
18
), pp.
2023
2028
.
12.
Zdeblick
,
T. A.
, 1993, “
A Prospective, Randomized Study of Lumbar Fusion. Preliminary Results
,”
Spine
,
18
(
8
), pp.
983
991
.
13.
Martin
,
B. I.
,
Mirza
,
S. K.
,
Comstock
,
B. A.
,
Gray
,
D. T.
,
Kreuter
,
W.
, and
Deyo
,
R. A.
, 2007, “
Are Lumbar Spine Reoperation Rates Falling With Greater Use of Fusion Surgery and New Surgical Technology?
,”
Spine
,
32
(
19
), pp.
2119
2126
.
14.
Bridwell
,
K. H.
,
Sedgewick
,
T. A.
,
O’Brien
,
M. F.
,
Lenke
,
L. G.
, and
Baldus
,
C.
, 1993, “
The Role of Fusion and Instrumentation in the Treatment of Degenerative Spondylolisthesis With Spinal Stenosis
,”
J. Spinal Disord.
,
6
(
6
), pp.
461
472
.
15.
Mardjetko
,
S. M.
,
Connolly
,
P. J.
, and
Shott
,
S.
, 1994,
“Degenerative Lumbar Spondylolisthesis. A Meta-Analysis of Literature 1970-1993
,”
Spine
,
19
(
20 Suppl
), pp.
2256S
2265S
.
16.
Christensen
,
F. B.
, 2004, “
Lumbar Spinal Fusion. Outcome in Relation to Surgical Methods, Choice of Implant and Postoperative Rehabilitation
,”
Acta Orthop. Scand. Suppl.
,
75
(
313
), pp.
2
43
.
17.
Ebraheim
,
N. A.
,
Rupp
,
R. E.
,
Savolaine
,
E. R.
, and
Reinke
,
D.
, 1994, “
Use of Titanium Implants in Pedicular Screw Fixation
,”
J. Spinal Disord.
,
7
(
6
), pp.
478
486
.
18.
Sagomonyants
,
K. B.
,
Jarman-Smith
,
M. L.
,
Devine
,
J. N.
,
Aronow
,
M. S.
, and
Gronowicz
,
G. A.
, 2008, “
The In Vitro Response of Human Osteoblasts to Polyetheretherketone (PEEK) Substrates Compared to Commercially Pure Titanium
,”
Biomaterials
,
29
(
11
), pp.
1563
1572
.
19.
Kurtz
,
S. M.
and
Devine
,
J. N.
, 2007, “
PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants
,”
Biomaterials
,
28
(
32
), pp.
4845
4869
.
20.
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Turner
,
C. H.
, 1993, “
Young’s Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements
,”
J. Biomech.
,
26
(
2
), pp.
111
119
.
21.
ASTM International, 2004, “
Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model
,” Subcommittee F04.25 on Spinal Devices, pp.
1
18
.
22.
Villarraga
,
M. L.
,
Cripton
,
P. A.
,
Teti
,
S. D.
,
Steffey
,
D. L.
,
Krisnamuthy
,
S.
,
Albert
,
T.
,
Hilibrand
,
A.
, and
Vaccaro
,
A.
, 2006, “
Wear and Corrosion in Retrieved Thoracolumbar Posterior Internal Fixation
,”
Spine
,
31
(
21
), pp.
2454
2462
.
23.
Bastian
,
L.
,
Lange
,
U.
,
Knop
,
C.
,
Tusch
,
G.
, and
Blauth
,
M.
, 2001, “
Evaluation of the Mobility of Adjacent Segments After Posterior Thoracolumbar Fixation: A Biomechanical Study
,”
Eur. Spine J.
,
10
(
4
), pp.
295
300
.
24.
Chou
,
W. Y.
,
Hsu
,
C. J.
,
Chang
,
W. N.
, and
Wong
,
C. Y.
, 2002, “
Adjacent Segment Degeneration After Lumbar Spinal Posterolateral Fusion With Instrumentation in Elderly Patients
,”
Arch. Orthop. Trauma Surg.
,
122
(
1
), pp.
39
43
.
25.
Eck
,
J. C.
,
Humphreys
,
S. C.
, and
Hodges
,
S. D.
, 1999, “
Adjacent-Segment Degeneration After Lumbar Fusion: A Review of Clinical, Biomechanical, and Radiologic Studies
,”
Am. J. Orthop.
,
28
(
6
), pp.
336
340
.
26.
Lee
,
C. K.
, 1988, “
Accelerated Degeneration of the Segment Adjacent to a Lumbar Fusion
,”
Spine
,
13
(
3
), pp.
375
377
.
27.
Lehmann
,
T. R.
,
Spratt
,
K. F.
,
Tozzi
,
J. E.
,
Weinstein
,
J. N.
,
Reinarz
,
S. J.
,
el-Khoury
,
G. Y.
, and
Colby
,
H.
, 1987, “
Long-Term Follow-up of Lower Lumbar Fusion Patients
,”
Spine
,
12
(
2
), pp.
97
104
.
28.
Rahm
,
M. D.
and
Hall
,
B. B.
, 1996, “
Adjacent-Segment Degeneration After Lumbar Fusion With Instrumentation: A Retrospective Study
,”
J. Spinal Disord.
,
9
(
5
), pp.
392
400
.
29.
Ahn
,
Y. H.
,
Chen
,
W. M.
,
Lee
,
K. Y.
,
Park
,
K. W.
, and
Lee
,
S. J.
, 2008, “
Comparison of the Load-Sharing Characteristics Between Pedicle-Based Dynamic and Rigid Rod Devices
,”
Biomed. Mater.
,
3
(
4
), p.
44101
.
30.
Cavagna
,
R.
,
Tournier
,
C.
,
Aunoble
,
S.
,
Bouler
,
J. M.
,
Antonietti
,
P.
,
Ronai
,
M.
, and
Le Huec
,
J. C.
, 2008, “
Lumbar Decompression and Fusion in Elderly Osteoporotic Patients: A Prospective Study Using Less Rigid Titanium Rod Fixation
,”
J. Spinal Disord. Tech.
,
21
(
2
), pp.
86
91
.
31.
Burval
,
D. J.
,
McLain
,
R. F.
,
Milks
,
R.
, and
Inceoglu
,
S.
, 2007, “
Primary Pedicle Screw Augmentation in Osteoporotic Lumbar Vertebrae: Biomechanical Analysis of Pedicle Fixation Strength
,”
Spine
,
32
(
10
), pp.
1077
1083
.
32.
Xu
,
H. Z.
,
Wang
,
X. Y.
,
Chi
,
Y. L.
,
Zhu
,
Q. A.
,
Lin
,
Y.
,
Huang
,
Q. S.
, and
Dai
,
L. Y.
, 2006, “
Biomechanical Evaluation of a Dynamic Pedicle Screw Fixation Device
,”
Clin. Biomech. (Bristol, Avon)
,
21
(
4
), pp.
330
336
.
33.
Chen
,
P. Q.
,
Lin
,
S. J.
,
Wu
,
S. S.
, and
So
,
H.
, 2003, “
Mechanical Performance of the New Posterior Spinal Implant: Effect of Materials, Connecting Plate, and Pedicle Screw Design
,”
Spine
,
28
(
9
), pp.
881
886
; discussion 887.
34.
Craven
,
T. G.
,
Carson
,
W. L.
,
Asher
,
M. A.
, and
Robinson
,
R. G.
, 1994, “
The Effects of Implant Stiffness on the Bypassed Bone Mineral Density and Facet Fusion Stiffness of the Canine Spine
,”
Spine
,
19
(
15
), pp.
1664
1673
.
35.
Cunningham
,
B. W.
,
Sefter
,
J. C.
,
Shono
,
Y.
, and
McAfee
,
P. C.
, 1993, “
Static and Cyclical Biomechanical Analysis of Pedicle Screw Spinal Constructs
,”
Spine
,
18
(
12
), pp.
1677
1688
.
36.
Johnston
,
C. E.
, II
,
Ashman
,
R. B.
,
Sherman
,
M. C.
,
Eberle
,
C. F.
,
Herndon
,
W. A.
,
Sullivan
,
J. A.
,
King
,
A. G.
, and
Burke
,
S. W.
, 1987, “
Mechanical Consequences of Rod Contouring and Residual Scoliosis in Sublaminar Segmental Instrumentation
,”
J. Orthop. Res.
,
5
(
2
), pp.
206
216
.
37.
Johnston
,
C. E.
, II
,
Welch
,
R. D.
,
Baker
,
K. J.
, and
Ashman
,
R. B.
, 1995, “
Effect of Spinal Construct Stiffness on Short Segment Fusion Mass Incorporation
,”
Spine
,
20
(
22
), pp.
2400
2407
.
38.
Lindsey
,
C.
,
Deviren
,
V.
,
Xu
,
Z.
,
Yeh
,
R. F.
, and
Puttlitz
,
C. M.
, 2006, “
The Effects of rod Contouring on Spinal Construct Fatigue Strength
,”
Spine
,
31
(
15
), pp.
1680
1687
.
39.
McAfee
,
P. C.
,
Farey
,
I. D.
,
Sutterlin
,
C. E.
,
Gurr
,
K. R.
,
Warden
,
K. E.
, and
Cunningham
,
B. W.
, 1991, “
The Effect of Spinal Implant Rigidity on Vertebral Bone Density. A Canine Model
,”
Spine
,
16
(
6
Suppl), pp.
S190
197
.
40.
Pienkowski
,
D.
,
Stephens
,
G. C.
,
Doers
,
T. M.
, and
Hamilton
,
D. M.
, 1998, “
Multicycle Mechanical Performance of Titanium and Stainless Steel Transpedicular Spine Implants
,”
Spine
,
23
(
7
), pp.
782
788
.
41.
Wedemeyer
,
M.
,
Parent
,
S.
,
Mahar
,
A.
,
Odell
,
T.
,
Swimmer
,
T.
, and
Newton
,
P.
, 2007, “
Titanium Versus Stainless Steel for Anterior Spinal Fusions: An Analysis Of Rod Stress as a Predictor of Rod Breakage During Physiologic Loading in a Bovine Model
,”
Spine
,
32
(
1
), pp.
42
48
.
42.
Williams
,
D.
, “
Polyetheretherketone for Long-Term Implantable Devices
,”
Med. Device Technol.
,
19
(
1
), pp.
8, 10
-
11
(2008).
43.
Williams
,
D. F.
,
McNamara
,
A.
, and
Turner
,
R. M.
, 1987, “
Potential of Polyetheretherketone (PEEK) and Carbon-Fibre-Reinforced PEEK in Medical Applications
,”
J. Mat. Sci. Lett.
,
6
, pp.
188
190
.
44.
Ferguson
,
S. J.
,
Visser
,
J. M.
, and
Polikeit
,
A.
, 2006, “
The Long-Term Mechanical Integrity of Non-Reinforced PEEK-OPTIMA Polymer for Demanding Spinal Applications: Experimental and Finite-Element Analysis
,”
Eur. Spine J.
,
15
(
2
), pp.
149
156
.
45.
Ponnappan
,
R. K.
,
Serhan
,
H.
,
Zarda
,
B.
,
Patel
,
R.
,
Albert
,
T.
, and
Vaccaro
,
A. R.
, 2009, “
Biomechanical Evaluation and Comparison of Polyetheretherketone Rod System to Traditional Titanium Rod Fixation
,”
Spine J.
,
9
(
3
), pp.
263
267
.
46.
Moon
,
S. M.
,
Ingalhalikar
,
A.
,
Highsmith
,
J. M.
, and
Vaccaro
,
A. R.
, 2009, “
Biomechanical Rigidity of an All-Polyetheretherketone Anterior Thoracolumbar Spinal Reconstruction Construct: An In Vitro Corpectomy Model
,”
Spine J.
,
9
(
4
), pp.
330
335
.
47.
ASTM International, 2003, “
ASTM F1798-97: Standard Guide for Evaluating the Static and Fatigue Properties of Interconnection Mechanisms and Subassemblies Used in Spinal Arthrodesis Implants
.”
48.
ASTM International, 2004, “
ASTM F1717-04: “Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model
.”
49.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Meade
,
K. P.
,
Lee
,
B.
, and
Dunlap
,
B.
, 1999, “
A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression
,”
Spine
,
24
(
10
), pp.
1003
1009
.
50.
Chazal
,
J.
,
Tanguy
,
A.
,
Bourges
,
M.
,
Gaurel
,
G.
,
Escande
,
G.
,
Guillot
,
M.
, and
Vanneuville
,
G.
, 1985, “
Biomechanical Properties of Spinal Ligaments and a Histological Study of the Supraspinal Ligament in Traction
,”
J. Biomech.
,
18
(
3
), pp.
167
176
.
51.
Kumaresan
,
S.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Maiman
,
D. J.
, 1999, “
Finite Element Modeling of the Cervical Spine: Role of Intervertebral Disc Under Axial and Eccentric Loads
,”
Med. Eng. Phys.
,
21
(
10
), pp.
689
700
.
52.
Little
,
J. S.
and
Khalsa
,
P. S.
, 2005, “
Material Properties of the Human Lumbar Facet Joint Capsule
,”
J. Biomech. Eng.
,
127
(
1
), pp.
15
24
.
53.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
, 2003, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.
54.
Polikeit
,
A.
,
Nolte
,
L. P.
, and
Ferguson
,
S. J.
, 2003, “
The Effect of Cement Augmentation on the Load Transfer in an Osteoporotic Functional Spinal Unit: Finite-Element Analysis
,”
Spine
,
28
(
10
), pp.
991
996
.
55.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
, 1997, “
Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body
,”
Spine
,
22
(
2
), pp.
140
150
.
56.
Turner
,
J. L.
,
Paller
,
D. J.
, and
Murrell
,
C. B.
, 2010, “
The Mechanical Effect of Commercially Pure Titanium and Polyetheretherketone Rods on Spinal Implants at the Operative and Adjacent Levels
,”
Spine (Phila Pa 1976)
,
35
(
21
), pp.
E1076
1082
.
57.
Cho
,
D. Y.
,
Liau
,
W. R.
,
Lee
,
W. Y.
,
Liu
,
J. T.
,
Chiu
,
C. L.
, and
Sheu
,
P. C.
, 2002, “
Preliminary Experience Using a Polyetheretherketone (PEEK) Cage in the Treatment of Cervical Disc Disease
,”
Neurosurgery
,
51
(
6
), pp.
1343
1349
; discussion 1349–1350.
58.
Cutler
,
A. R.
,
Siddiqui
,
S.
,
Mohan
,
A. L.
,
Hillard
,
V. H.
,
Cerabona
,
F.
, and
Das
,
K.
, 2006, “
Comparison of Polyetheretherketone Cages With Femoral Cortical Bone Allograft as a single-Piece Interbody Spacer in Transforaminal Lumbar Interbody Fusion
,”
J. Neurosurg. Spine
,
5
(
6
), pp.
534
539
.
59.
Desogus
,
N.
,
Ennas
,
F.
,
Leuze
,
R.
, and
Maleci
,
A.
, 2005, “
Posterior Lumbar Interbody Fusion With Peek Cages: Personal Experience With 20 Patients
,”
J. Neurosurg. Sci.
,
49
(
4
), pp.
137
141
; discussion 141.
60.
Kulkarni
,
A. G.
,
Hee
,
H. T.
, and
Wong
,
H. K.
, 2007, “
Solis Cage (PEEK) for Anterior Cervical Fusion: Preliminary Radiological Results With Emphasis on Fusion and Subsidence
,”
Spine J.
,
7
(
2
), pp.
205
209
.
61.
Liao
,
J. C.
,
Niu
,
C. C.
,
Chen
,
W. J.
, and
Chen
,
L. H.
, 2008, “
Polyetheretherketone (PEEK) Cage Filled With Cancellous Allograft in Anterior Cervical Discectomy and Fusion
,”
Int. Orthop.
,
32
(
5
), pp.
643
648
.
62.
Spruit
,
M.
,
Falk
,
R. G.
,
Beckmann
,
L.
,
Steffen
,
T.
, and
Castelein
,
R. M.
, 2005, “
The In Vitro Stabilising Effect of Polyetheretherketone Cages Versus a Titanium Cage of Similar Design for Anterior Lumbar Interbody Fusion
,”
Eur. Spine J.
,
14
(
8
), pp.
752
758
.
63.
Toth
,
J. M.
,
Wang
,
M.
,
Estes
,
B. T.
,
Scifert
,
J. L.
,
Seim
,
H. B.
, III
, and
Turner
,
A. S.
, 2006, “
Polyetheretherketone as a Biomaterial for Spinal Applications
,”
Biomaterials
,
27
(
3
), pp.
324
334
.
64.
Vadapalli
,
S.
,
Sairyo
,
K.
,
Goel
,
V. K.
,
Robon
,
M.
,
Biyani
,
A.
,
Khandha
,
A.
, and
Ebraheim
,
N. A.
, 2006, “
Biomechanical Rationale for Using Polyetheretherketone (PEEK) Spacers for Lumbar Interbody Fusion-A Finite Element Study
,”
Spine
,
31
(
26
), pp.
E992
998
.
65.
Highsmith
,
J. M.
,
Tumialan
,
L. M.
, and
Rodts
,
G. E.
, Jr.
, 2007, “
Flexible Rods and the Case for Dynamic Stabilization
,”
Neurosurg. Focus
,
22
(
1
), p.
E11
.
66.
Bamber
,
N. I.
,
Zavala
I. I. G.
, and
Nockels
,
R. P.
, 2008, “
Early Single Center Experience Utilizing PEEK Rods for Lumbar Instrumented Fusion
,”
AANS Annual Meeting
Chicago, IL
., p. Article ID: 49431.
67.
Zavala
,
I. I. G.
,
Bamber
,
N. I.
, and
Nockels
,
R. P.
, 2008, “
Clinical Experience with Circumferential PEEK Instrumentation (Interbody and Pedicle Based Rods) in Lumbar Fusion
,”
AANS Annual Meeting
Chicago, IL
., p. Article ID: 49440.
68.
Goel
,
V. K.
,
Nishiyama
,
K.
,
Weinstein
,
J.
, and
Liu
Y. K.
, 1986, “
Mechanical Properties of Lumbar Spinal Motion Segments as Affected by Partial Disc Removal
,”
Spine
11
, pp.
1008
1012
.
You do not currently have access to this content.