Many biological consequences of external mechanical loads applied to cells depend on localized cell deformations rather than on average whole-cell-body deformations. Such localized intracellular deformations are likely to depend, in turn, on the individual geometrical features of each cell, e.g., the local surface curvatures or the size of the nucleus, which always vary from one cell to another, even within the same culture. Our goal here was to characterize cell-to-cell variabilities in magnitudes and distribution patterns of localized tensile strains that develop in the plasma membrane (PM) and nuclear surface area (NSA) of compressed myoblasts, in order to identify resemblance or differences in mechanical performances across the cells. For this purpose, we utilized our previously developed confocal microscopy-based three-dimensional cell-specific finite element modeling methodology. Five different C2C12 undifferentiated cells belonging to the same culture were scanned confocally and modeled, and were then subjected to compression in the simulation setting. We calculated the average and peak tensile strains in the PM and NSA, the percentage of PM area subjected to tensile strains above certain thresholds and the coefficient of variation (COV) in average and peak strains. We found considerable COV values in tensile strains developing at the PM and NSA (up to ∼35%) but small external compressive deformations induced greater variabilities in intracellular strains across cells compared to large deformations. Interestingly, the external deformations needed to cause localized PM or NSA strains exceeding each threshold were very close across the different cells. Better understanding of variabilities in mechanical performances of cells—either of the same type or of different types—is important for interpreting experimental data in any experiments involving delivery of mechanical loads to cells.

References

1.
Stegemann
,
J. P.
,
Hong
,
H.
, and
Nerem
,
R. M.
, 2005, “
Mechanical, Biochemical, and Extracellular Matrix Effects on Vascular Smooth Muscle Cell Phenotype
,”
J. Appl. Physiol.
,
98
(
6
), pp.
2321
7
.
2.
Janmey
,
P. A.
, and
Mcculloch
,
C. A.
, 2007, “
Cell Mechanics: Integrating Cell Responses to Mechanical Stimuli
,”
Annu. Rev. Biomed. Eng.
,
9
, pp.
1
34
.
3.
Discher
,
D. E.
,
Mooney
,
D. J.
, and
Zandstra
,
P. W.
, 2009, “
Growth Factors, Matrices, and Forces Combine and Control Stem Cells
,”
Sci.
,
324
(
5935
), pp.
1673
7
.
4.
Ramage
,
L.
,
Nuki
,
G.
, and
Salter
,
D. M.
, 2009, “
Signalling Cascades in Mechanotransduction: Cell-Matrix Interactions and Mechanical Loading
,”
Scand. J. Med. Sci. Sports
,
19
(
4
), pp.
457
69
.
5.
Park
,
J. Y.
,
Takayama
,
S.
, and
Lee
,
S. H.
, 2010, “
Regulating Microenvironmental Stimuli for Stem Cells and Cancer Cells Using Microsystems
,”
Integr. Biol.
,
2
, pp.
229
240
.
6.
Peeters
,
E. A.
,
Oomens
,
C. W.
,
Bouten
,
C. V.
,
Bader
,
D. L.
, and
Baaijens
,
F. P.
, 2005, “
Mechanical and Failure Properties of Single Attached Cells under Compression
,”
J. Biomech.
,
38
(
8
), pp.
1685
93
.
7.
Koay
,
E. J.
,
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
, 2003, “
Creep Indentation of Single Cells
,”
J. Biomech. Eng.
,
125
(
3
), pp.
334
41
.
8.
Watanabe-Nakayama
,
T.
,
Machida
,
S.
,
Harada
,
I.
,
Sekiguchi
,
H.
,
Afrin
,
R.
, and
Ikai
,
A.
, 2011, “
Direct Detection of Cellular Adaptation to Local Cyclic Stretching at the Single Cell Level by Atomic Force Microscopy
,”
Biophys. J.
,
100
(
3
), pp.
564
72
.
9.
Chen
,
C.
,
Krishnan
,
R.
,
Zhou
,
E.
,
Ramachandran
,
A.
,
Tambe
,
D.
,
Rajendran
,
K.
,
Adam
,
R. M.
,
Deng
,
L.
, and
Fredberg
,
J. J.
, 2010, “
Fluidization and Resolidification of the Human Bladder Smooth Muscle Cell in Response to Transient Stretch
,”
PLoS One
,
5
(
8
), p.
e12035
.
10.
Boccafoschi
,
F.
,
Mosca
,
C.
,
Bosetti
,
M.
, and
Cannas
,
M.
,
“The Role of Mechanical Stretching in the Activation and Localization of Adhesion Proteins and Related Intracellular Molecules,”
J. Cell. Biochem.
(in press).
11.
Steward
,
R. L.
, Jr.
,
Cheng
,
C. M.
,
Wang
,
D. L.
, and
Leduc
,
P. R.
, 2010, “
Probing Cell Structure Responses through a Shear and Stretching Mechanical Stimulation Technique
,”
Cell. Biochem. Biophys.
,
56
(
2–3
), pp.
115
24
.
12.
Hochmuth
,
R. M.
, 2000, “
Micropipette Aspiration of Living Cells
,”
J. Biomech.
,
33
(
1
), pp.
15
22
.
13.
Zhao
,
R.
,
Wyss
,
K.
, and
Simmons
,
C. A.
, 2009, “
Comparison of Analytical and Inverse Finite Element Approaches to Estimate Cell Viscoelastic Properties by Micropipette Aspiration
,”
J. Biomech.
,
42
(
16
), pp.
2768
73
.
14.
Even-Tzur
,
N.
,
Zaretsky
,
U.
,
Grinberg
,
O.
,
Davidovich
,
T.
,
Kloog
,
Y.
,
Wolf
,
M.
, and
Elad
,
D.
, 2010, “
Climate Chamber for Environmentally Controlled Laboratory Airflow Experiments
,”
Technol. Health Care
,
18
(
3
), pp.
157
63
.
15.
Kohles
,
S. S.
,
Neve
,
N.
,
Zimmerman
,
J. D.
, and
Tretheway
,
D. C.
, 2009, “
Mechanical Stress Analysis of Microfluidic Environments Designed for Isolated Biological Cell Investigations
,”
J. Biomech. Eng.
,
131
(
12
), p.
121006
.
16.
Lagana
,
K.
,
Moretti
,
M.
,
Dubini
,
G.
, and
Raimondi
,
M. T.
, 2008, “
A New Bioreactor for the Controlled Application of Complex Mechanical Stimuli for Cartilage Tissue Engineering
,”
Proc. Inst. Mech. Eng. H
,
222
(
5
), pp.
705
15
.
17.
Gawlitta
,
D.
,
Li
,
W.
,
Oomens
,
C. W.
,
Baaijens
,
F. P.
,
Bader
,
D. L.
, and
Bouten
,
C. V.
, 2007, “
The Relative Contributions of Compression and Hypoxia to Development of Muscle Tissue Damage: An in Vitro Study
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
273
84
.
18.
Gefen
,
A.
,
Cornelissen
,
L. H.
,
Gawlitta
,
D.
,
Bader
,
D. L.
, and
Oomens
,
C. W.
, 2008, “
The Free Diffusion of Macromolecules in Tissue-Engineered Skeletal Muscle Subjected to Large Compression Strains
,”
J. Biomech.
,
41
(
4
), pp.
845
53
.
19.
Haberstroh
,
K. M.
,
Kaefer
,
M.
, and
Bizios
,
R.
, 2000, “
Inhibition of Pressure Induced Bladder Smooth Muscle Cell Hyperplasia Using Crm197
,”
J. Urol.
,
164
(
4
), pp.
1329
33
.
20.
Haberstroh
,
K. M.
,
Kaefer
,
M.
,
Retik
,
A. B.
,
Freeman
,
M. R.
, and
Bizios
,
R.
, 1999, “
The Effects of Sustained Hydrostatic Pressure on Select Bladder Smooth Muscle Cell Functions
,”
J. Urol.
,
162
(
6
), pp.
2114
8
.
21.
Nagatomi
,
J.
,
Wu
,
Y.
, and
Gray
,
M.
, 2009, “
Proteomic Analysis of Bladder Smooth Muscle Cell Response to Cyclic Hydrostatic Pressure
,”
Cell. Molec. Bioeng.
,
2
, pp.
166
173
.
22.
Olsen
,
S. M.
,
Stover
,
J. D.
, and
Nagatomi
,
J.
, 2011, “
Examining the Role of Mechanosensitive Ion Channels in Pressure Mechanotransduction in Rat Bladder Urothelial Cells
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
688
97
.
23.
Or-Tzadikario
,
S.
, and
Gefen
,
A.
, 2011, “
Confocal-Based Cell-Specific Finite Element Modeling Extended to Study Variable Cell Shapes and Intracellular Structures: The Example of the Adipocyte
,”
J.Biomech.
,
44
(
3
), pp.
567
73
.
24.
Slomka
,
N.
,
Or-Tzadikario
,
S. D. S.
, and
Gefen
,
A.
, 2009, “
Membrane-Stretch-Induced Cell Death in Deep Tissue Injury: Computer Model Studies
,”
Cell. Mol. Bioeng.
,
2
, pp.
118
132
.
25.
Slomka
,
N.
, and
Gefen
,
A.
, 2010, “
Confocal Microscopy-Based Three-Dimensional Cell-Specific Modeling for Large Deformation Analyses in Cellular Mechanics
,”
J. Biomech.
,
43
(
9
), pp.
1806
16
.
26.
Laplaca
,
M. C.
,
Lessing
,
M. C.
,
Prado
,
G. R.
, and
Simon
,
C. M.
, 2009, “
Susceptibility of Neuronal Membranes to Mechanical Injury and Implications for Repair
,” in
The Pathomechanics of Tissue Injury and Disease, and the Mechanphysiology of Healing
,
Amit
Gefen
(Editor), (
Research Signpost
,
Kerals, India
), pp.
64
91
, Chap. 3.
27.
Arundine
,
M.
,
Aarts
,
M.
,
Lau
,
A.
, and
Tymianski
,
M.
, 2004, “
Vulnerability of Central Neurons to Secondary Insults after in Vitro Mechanical Stretch
,”
J. Neurosci.
,
24
(
37
), pp.
8106
23
.
28.
Gefen
,
A.
,
Van Nierop
,
B.
,
Bader
,
D. L.
, and
Oomens
,
C. W.
, 2008, “
Strain-Time Cell-Death Threshold for Skeletal Muscle in a Tissue-Engineered Model System for Deep Tissue Injury
,”
J. Biomech.
,
41
(
9
), pp.
2003
12
.
29.
Baaijens
,
F. P.
,
Trickey
,
W. R.
,
Laursen
,
T. A.
, and
Guilak
,
F.
, 2005, “
Large Deformation Finite Element Analysis of Micropipette Aspiration to Determine the Mechanical Properties of the Chondrocyte
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
494
501
.
30.
Breuls
,
R. G.
,
Sengers
,
B. G.
,
Oomens
,
C. W.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
, 2002, “
Predicting Local Cell Deformations in Engineered Tissue Constructs: A Multilevel Finite Element Approach
,”
J. Biomech. Eng.
,
124
(
2
), pp.
198
207
.
31.
Caille
,
N.
,
Thoumine
,
O.
,
Tardy
,
Y.
, and
Meister
,
J. J.
, 2002, “
Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells
,”
J. Biomech.
,
35
(
2
), pp.
177
87
.
32.
Hochmuth
,
R. M.
,
Mohandas
,
N.
, and
Blackshear
,
P. L.
, Jr.
, 1973, “
Measurement of the Elastic Modulus for Red Cell Membrane Using a Fluid Mechanical Technique
,”
Biophys. J.
,
13
(
8
), pp.
747
62
.
You do not currently have access to this content.