Biological soft tissues and cells may be subjected to mechanical as well as chemical (osmotic) loading under their natural physiological environment or various experimental conditions. The interaction of mechanical and chemical effects may be very significant under some of these conditions, yet the highly nonlinear nature of the set of governing equations describing these mechanisms poses a challenge for the modeling of such phenomena. This study formulated and implemented a finite element algorithm for analyzing mechanochemical events in neutral deformable porous media under finite deformation. The algorithm employed the framework of mixture theory to model the porous permeable solid matrix and interstitial fluid, where the fluid consists of a mixture of solvent and solute. A special emphasis was placed on solute-solid matrix interactions, such as solute exclusion from a fraction of the matrix pore space (solubility) and frictional momentum exchange that produces solute hindrance and pumping under certain dynamic loading conditions. The finite element formulation implemented full coupling of mechanical and chemical effects, providing a framework where material properties and response functions may depend on solid matrix strain as well as solute concentration. The implementation was validated using selected canonical problems for which analytical or alternative numerical solutions exist. This finite element code includes a number of unique features that enhance the modeling of mechanochemical phenomena in biological tissues. The code is available in the public domain, open source finite element program FEBio (http://mrl.sci.utah.edu/software).

References

1.
Crank
,
J.
, 1979,
The Mathematics of Diffusion
, 2nd ed.,
Clarendon Press
,
Oxford
.
2.
Deen
,
W. M.
, 1987, “
Hindered Transport of Large Molecules in Liquid-Filled Pores
,”
AIChE J.
,
33
(
9
), pp.
1409
1425
.
3.
Ogston
,
A. G.
, and
Phelps
,
C. F.
, 1961, “
The Partition of Solutes Between Buffer Solutions and Solutions Containing Hyaluronic Acid
,”
Biochem. J.
,
78
, pp.
827
833
.
4.
Laurent
,
T. C.
, and
Killander
,
J.
, 1963, “
A Theory of Gel Filtration and Its Experimental Verification
,”
J. Chromatogr.
,
14
, pp.
317
330
.
5.
Albro
,
M. B.
,
Chahine
,
N. O.
,
Caligaris
,
M.
,
Wei
,
V. I.
,
Likhitpanichkul
,
M.
,
Ng
,
K. W.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2007, “
Osmotic Loading of Spherical Gels: A Biomimetic Study of Hindered Transport in the Cell Protoplasm
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
503
510
.
6.
Quinn
,
T. M.
,
Morel
,
V.
, and
Meister
,
J. J.
, 2001, “
Static Compression of Articular Cartilage Can Reduce Solute Diffusivity and Partitioning: Implications for the Chondrocyte Biological Response
,”
J. Biomech.
,
34
(
11
), pp.
1463
1469
.
7.
Gu
,
W. Y.
,
Yao
,
H.
,
Vega
,
A. L.
, and
Flagler
,
D.
, 2004, “
Diffusivity of Ions in Agarose Gels and Intervertebral Disc: Effect of Porosity
,”
Ann. Biomed. Eng.
,
32
(
12
), pp.
1710
1717
.
8.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.
9.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
, 1997, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. Eng. Sci.
,
35
(
8
), pp.
793
802
.
10.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
169
180
.
11.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1993, “
Transport of Fluid and Ions Through a Porous-Permeable Charged-Hydrated Tissue, and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomech.
,
26
(
6
), pp.
709
723
.
12.
Lai
,
W. M.
,
Mow
,
V. C.
,
Sun
,
D. D.
, and
Ateshian
,
G. A.
, 2000, “
On the Electric Potentials Inside a Charged Soft Hydrated Biological Tissue: Streaming Potential Versus Diffusion Potential
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
336
346
.
13.
Huyghe
,
J. M.
,
Houben
,
G. B.
,
Drost
,
M. R.
, and
van Donkelaar
,
C. C.
, 2004, “
An Ionised/Nonionised Dual Porosity Model of Intervertebral Disc Tissue: Experimental Quantification of Parameters
,”
Biomech. Model Mechanobiol.
,
2
(
4
), pp.
3
19
.
14.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1997, “
A Triphasic Analysis of Negative Osmotic Flows Through Charged Hydrated Soft Tissues
,”
J. Biomech.
,
30
(
1
), pp.
71
78
.
15.
Simon
,
B. R.
,
Liable
,
J. P.
,
Pflaster
,
D.
,
Yuan
,
Y.
, and
Krag
,
M. H.
, 1996, “
A Poroelastic Finite Element Formulation Including Transport and Swelling in Soft Tissue Structures
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
1
9
.
16.
Frijns
,
A. J. H.
,
Huyghe
,
J. M.
, and
Janssen
,
J. D.
, 1997, “
Validation of the Quadriphasic Mixture Theory for Intervertebral Disc Tissue
,”
Int. J. Eng. Sci.
,
35
(
15
), pp.
1419
1429
.
17.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1999, “
A Mixed Finite Element Formulation of Triphasic Mechano-electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
45
(
10
), pp.
1375
1402
.
18.
Kaasschieter
,
E. F.
,
Frijns
,
A. J. H.
, and
Huyghe
,
J. M.
, 2003, “
Mixed Finite Element Modelling of Cartilaginous Tissues
,”
Math. Comput. Simul.
,
61
(
3–6
), pp.
549
560
.
19.
Yao
,
H.
, and
Gu
,
W. Y.
, 2007, “
Three-Dimensional Inhomogeneous Triphasic Finite-Element Analysis of Physical Signals and Solute Transport in Human Intervertebral Disc Under Axial Compression
,”
J. Biomech.
,
40
(
9
), pp.
2071
2077
.
20.
Magnier
,
C.
,
Boiron
,
O.
,
Wendling-Mansuy
,
S.
,
Chabrand
,
P.
, and
Deplano
,
V.
, 2009, “
Nutrient Distribution and Metabolism in the Intervertebral Disc in the Unloaded State: A Parametric Study
,”
J. Biomech.
,
42
(
2
), pp.
100
108
.
21.
van Loon
,
R.
,
Huyghe
,
J. M.
,
Wijlaars
,
M. W.
, and
Baaijens
,
F. P. T.
, 2003, “
3D FE Implementation of an Incompressible Quadriphasic Mixture Model
,”
Int. J. Numer. Methods Eng.
,
57
(
9
), pp.
1243
1258
.
22.
Wu
,
J. Z.
, and
Herzog
,
W.
, 2002, “
Simulating the Swelling and Deformation Behaviour in Soft Tissues Using a Convective Thermal Analogy
,”
Biomed. Eng. Online
,
1
, p.
8
.
23.
Azeloglu
,
E. U.
,
Albro
,
M. B.
,
Thimmappa
,
V. A.
,
Ateshian
,
G. A.
, and
Costa
,
K. D.
, 2008, “
Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stresses in the Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
,
294
(
3
), pp.
H1197
H1205
.
24.
Ateshian
,
G. A.
,
Rajan
,
V.
,
Chahine
,
N. O.
,
Canal
,
C. E.
, and
Hung
,
C. T.
, 2009, “
Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061003
.
25.
Sengers
,
B. G.
,
Oomens
,
C. W.
, and
Baaijens
,
F. P.
, 2004, “
An Integrated Finite-Element Approach to Mechanics, Transport and Biosynthesis in Tissue Engineering
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
82
91
.
26.
Steck
,
R.
,
Niederer
,
P.
, and
Knothe Tate
,
M. L.
, 2003, “
A Finite Element Analysis for the Prediction of Load-Induced Fluid Flow and Mechanochemical Transduction in Bone
,”
J. Theor. Biol.
,
220
(
2
), pp.
249
259
.
27.
Zhang
,
L.
, and
Szeri
,
A.
, 2005, “
Transport of Neutral Solute in Articular Cartilage: Effects of Loading and Particle Size
,”
Proc. R. Soc. London
,
461
(2059), pp.
2021
2042
.
28.
Basser
,
P. J.
, 1995, “
Inferring Microstructural Features and the Physiological State of Tissues From Diffusion-Weighted Images
,”
NMR Biomed.
,
8
(
7–8
), pp.
333
344
.
29.
Basser
,
P. J.
, and
Pierpaoli
,
C.
, 1996, “
Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI
,”
J. Magn. Reson., Ser. B
111
(
3
), pp.
209
219
.
30.
Leddy
,
H. A.
,
Haider
,
M. A.
, and
Guilak
,
F.
, 2006, “
Diffusional Anisotropy in Collagenous Tissues: Fluorescence Imaging of Continuous Point Photobleaching
,”
Biophys. J.
,
91
(
1
), pp.
311
316
.
31.
Ellegood
,
J.
,
McKay
,
R. T.
,
Hanstock
,
C. C.
, and
Beaulieu
,
C.
, 2007, “
Anisotropic Diffusion of Metabolites in Peripheral Nerve Using Diffusion Weighted Magnetic Resonance Spectroscopy at Ultra-high Field
,”
J. Magn. Reson.
,
184
(
1
), pp.
20
28
.
32.
Mansour
,
J. M.
, and
Mow
,
V. C.
, 1976, “
The Permeability of Articular Cartilage Under Compressive Strain and at High Pressures
,”
J. Bone Joint Surg. AM.
,
58
(
4
), pp.
509
516
.
33.
Quinn
,
T. M.
,
Kocian
,
P.
, and
Meister
,
J. J.
, 2000, “
Static Compression Is Associated With Decreased Diffusivity of Dextrans in Cartilage Explants
,”
Arch. Biochem. Biophys.
,
384
(
2
), pp.
327
34
.
34.
Gu
,
W. Y.
,
Yao
,
H.
,
Huang
,
C. Y.
, and
Cheung
,
H. S.
, 2003, “
New Insight Into Deformation-Dependent Hydraulic Permeability of Gels and Cartilage, and Dynamic Behavior of Agarose Gels in Confined Compression
,”
J. Appl. Biomech.
,
36
(
4
), pp.
593
598
.
35.
Ateshian
,
G. A.
, and
Weiss
,
J. A.
, 2010, “
Anisotropic Hydraulic Permeability Under Finite Deformation
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111004
.
36.
Mackie
,
J. S.
, and
Meares
,
P.
, 1955, “
The Diffusion of Electrolytes in a Cation-Exchange Resin Membrane. I. Theoretical
,”
Proc. R. Soc. London
,
232
(1191), pp.
498
509
.
37.
Evans
,
R. C.
, and
Quinn
,
T. M.
, 2006, “
Solute Convection in Dynamically Compressed Cartilage
,”
J. Appl. Biomech.
,
39
(
6
), pp.
1048
1055
.
38.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2003, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
602
614
.
39.
Albro
,
M. B.
,
Chahine
,
N. O.
,
Li
,
R.
,
Yeager
,
K.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2008, “
Dynamic Loading of Deformable Porous Media Can Induce Active Solute Transport
,”
J. Biomech.
,
41
(
15
), pp.
3152
3157
.
40.
Albro
,
M. B.
,
Li
,
R.
,
Banerjee
,
R. E.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2010, “
Validation of Theoretical Framework Explaining Active Solute Uptake in Dynamically Loaded Porous Media
,”
J. Biomech.
,
43
(
12
), pp.
2267
2273
.
41.
Ateshian
,
G. A.
,
Likhitpanichkul
,
M.
, and
Hung
,
C. T.
, 2006, “
A Mixture Theory Analysis for Passive Transport in Osmotic Loading of Cells
,”
J. Biomech.
,
39
(
3
), pp.
464
475
.
42.
Weiss
,
T. F.
, 1996,
Cellular Biophysics
,
MIT Press
,
Cambridge, MA
.
43.
Albro
,
M. B.
,
Petersen
,
L. E.
,
Li
,
R.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2009, “
Influence of the Partitioning of Osmolytes by the Cytoplasm on the Passive Response of Cells to Osmotic Loading
,”
Biophys. J.
,
97
(
11
), pp.
2886
2893
.
44.
Lazzara
,
M. J.
, and
Deen
,
W. M.
, 2004, “
Effects of Concentration on the Partitioning of Macromolecule Mixtures in Agarose Gels
,”
J. Colloid Interface Sci.
,
272
(
2
), pp.
288
297
.
45.
Albro
,
M. B.
,
Rajan
,
V.
,
Li
,
R.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2009, “
Characterization of the Concentration-Dependence of Solute Diffusivity and Partitioning in a Model Dextran-Agarose Transport System
,”
Cell Mol. Bioeng.
,
2
(
3
), pp.
295
305
.
46.
Tinoco
,
I.
,
Sauer
,
K.
, and
Wang
,
J. C.
, 1995,
Physical Chemistry: Principles and Applications in Bbiological Sciences
, 3rd ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
47.
McNaught
,
A. D.
, and
Wilkinson
,
A.
, 1997,
Compendium of Chemical Terminology: IUPAC Recommendations
, 2nd ed.,
Blackwell Science
,
Oxford
.
48.
Truesdell
,
C.
, and
Toupin
,
R.
, 1960,
The Classical Field Theories, Vol. III of Handbuch der Physik
,
Springer
,
Heidelberg
.
49.
Bowen
,
R.
, 1976,
Theory of Mixtures Vol. 3 of Continuum Physics
,
Academic
,
New York
.
50.
Yao
,
H.
, and
Gu
,
W. Y.
, 2006, “
Physical Signals and Solute Transport in Human Intervertebral Disc During Compressive Stress Relaxation: 3D Finite Element Analysis
,”
Biorheology
,
43
(
3–4
), pp.
323
35
.
51.
Zhang
,
L.
,
Gardiner
,
B. S.
,
Smith
,
D. W.
,
Pivonka
,
P.
, and
Grodzinsky
,
A.
, 2007, “
The Effect of Cyclic Deformation and Solute Binding on Solute Transport in Cartilage
,”
Arch. Biochem. Biophys.
,
457
(
1
), pp.
47
56
.
52.
Ateshian
,
G. A.
, 2007, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
423
445
.
53.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
, 1981, “
Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
103
(
2
), pp.
61
66
.
54.
Holmes
,
M. H.
, and
Mow
,
V. C.
, 1990, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
1156
.
55.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
, and
Sah
,
R. L.
, 2001, “
Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
,
34
(
1
), pp.
1
12
.
56.
Eringen
,
A.
, and
Ingram
,
J.
, 1965, “
Continuum Theory of Chemically Reacting Media - 1[prime]
,”
Int. J. Comput. Eng. Sci.
,
3
, pp.
197
212
.
57.
Katzir-Katchalsky
,
A.
, and
Curran
,
P. F.
, 1965,
Nonequilibrium Thermodynamics in Biophysics
,
Harvard University Press
,
Cambridge
.
58.
Bonet
,
J.
, and
Wood
,
R. D.
, 1997,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
New York
.
59.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
, 1994,
Mathematical Foundations of Elasticity
,
Dover
,
New York
.
60.
Albro
,
M. B.
,
Banerjee
,
R. E.
,
Li
,
R.
,
Oungoulian
,
S. R.
,
Chen
,
B.
,
Del Palomar
,
A. P.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2011, “
Dynamic Loading of Immature Epiphyseal Cartilage Pumps Nutrients Out of Vascular Canals
,”
J. Biomech
,
44
(
9
), pp.
1654
1659
.
61.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1984, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.
62.
Lucio
,
A. D.
,
Santos
,
R. A.
, and
Mesquita
,
O. N.
, 2003, “
Measurements and Modeling of Water Transport and Osmoregulation in a Single Kidney Cell Using Optical Tweezers and Videomicroscopy
,”
Phys. Rev. E
,
68
, p.
041906
.
63.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.
64.
Curnier
,
A.
,
He
,
Q.-C.
, and
Zysset
,
P.
, 1995, “
Conewise Linear Elastic Materials
,”
J. Elasticity
,
37
(
1
), pp.
1
38
You do not currently have access to this content.