It is well known that blood vessels exhibit viscoelastic properties, which are modeled in the literature with different mathematical forms and experimental bases. The wide range of existing viscoelastic wall models may produce significantly different blood flow, pressure, and vessel deformation solutions in cardiovascular simulations. In this paper, we present a novel comparative study of two different viscoelastic wall models in nonlinear one-dimensional (1D) simulations of blood flow. The viscoelastic models are from papers by Holenstein et al. in 1980 (model V1) and Valdez-Jasso et al. in 2009 (model V2). The static elastic or zero-frequency responses of both models are chosen to be identical. The nonlinear 1D blood flow equations incorporating wall viscoelasticity are solved using a space-time finite element method and the implementation is verified with the Method of Manufactured Solutions. Simulation results using models V1, V2 and the common static elastic model are compared in three application examples: (i) wave propagation study in an idealized vessel with reflection-free outflow boundary condition; (ii) carotid artery model with nonperiodic boundary conditions; and (iii) subject-specific abdominal aorta model under rest and simulated lower limb exercise conditions. In the wave propagation study the damping and wave speed were largest for model V2 and lowest for the elastic model. In the carotid and abdominal aorta studies the most significant differences between wall models were observed in the hysteresis (pressure-area) loops, which were larger for V2 than V1, indicating that V2 is a more dissipative model. The cross-sectional area oscillations over the cardiac cycle were smaller for the viscoelastic models compared to the elastic model. In the abdominal aorta study, differences between constitutive models were more pronounced under exercise conditions than at rest. Inlet pressure pulse for model V1 was larger than the pulse for V2 and the elastic model in the exercise case. In this paper, we have successfully implemented and verified two viscoelastic wall models in a nonlinear 1D finite element blood flow solver and analyzed differences between these models in various idealized and physiological simulations, including exercise. The computational model of blood flow presented here can be utilized in further studies of the cardiovascular system incorporating viscoelastic wall properties.

References

1.
Anor
,
T.
,
Grinberg
,
L.
,
Baek
,
H.
,
Madsen
,
J. R.
,
Jayaraman
,
M. V.
, and
Karniadakis
,
G. E.
, 2010, “
Modeling of Blood Flow in Arterial Trees
,” Wiley Interdiscip.
Rev.: Syst. Biol. Med.
,
2
(
5
), pp.
612
623
.
2.
Taylor
,
C. A.
, and
Steinman
,
D. A.
, 2010, “
Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28-30, (2008) Pasadena, California
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
1188
1203
.
3.
Quarteroni
,
A.
,
Tuveri
,
M.
, and
Veneziani
,
A.
, 2000, “
Computational Vascular Fluid Dynamics: Problems, Models and Methods
,”
Comput. Visualiz. Sci.
,
2
, pp.
163
197
.
4.
Taylor
,
C. A.
, and
Draney
,
M. T.
, 2004, “
Experimental and Computational Methods in Cardiovascular Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
197
231
.
5.
Vignon-Clementel
,
I. E.
,
Marsden
,
A. L.
, and
Feinstein
,
J. A.
, 2010, “
A Primer on Computational Simulation in Congenital Heart Disease for the Clinician
,”
Progr. Pediatr. Cardiol.
,
30
(
1–2
), pp.
3
13
.
6.
Migliavacca
,
F.
, and
Dubini
,
G.
, 2005, “
Computational Modeling of Vascular Anastomoses
,”
Biomech. Model. Mechanobiol.
,
3
(
4
), pp.
235
250
.
7.
Bergel
,
D. H.
, 1961, “
The Dynamic Elastic Properties of the Arterial Wall
,”
J. Physiol.
,
156
(
3
), pp.
458
469
.
8.
Learoyd
,
B. M.
, and
Taylor
,
M. G.
, 1966, “
Alterations With Age in the Viscoelastic Properties of Human Arterial Walls
,”
Circ. Res.
,
18
, pp.
278
292
.
9.
Westerhof
,
N.
, and
Noordergraaf
,
A.
, 1970, “
Arterial Viscoelasticity: A Generalized Model: Effect on Input Impedance and Wave Travel in the Systematic Tree
,”
J. Biomech.
,
3
, pp.
357
379
.
10.
Wesseling
,
K. H.
,
Weber
,
H.
, and
de Wit
,
B.
, 1973, “
Estimated Five Component Viscoelastic Model Parameters for Human Arterial Walls.
,”
J. Biomech.
,
6
, pp.
13
24
.
11.
Tanaka
,
T. T.
, and
Fung
,
Y. C.
, 1974, “
Elastic and Inelastic Properties of the Canine Aorta and Their Variation Along the Aortic Tree
,”
J. Biomech.
,
7
(
4
), pp.
357
370
.
12.
Holenstein
,
R.
,
Niederer
,
P.
, and
Anliker
,
M.
, 1980, “
A Viscoelastic Model for Use in Predicting Arterial Pulse Waves
,”
J. Biomech. Eng.
,
102
(
4
), pp.
318
325
.
13.
Cox
,
R. H.
, 1984, “
Viscoelastic Properties of Canine Pulmonary Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
246
(
1
), pp.
H90
H96
.
14.
Langewouters
,
G. J.
,
Wesseling
,
K. H.
, and
Goedhard
,
W. J. A.
, 1985, “
The Pressure Dependent Dynamic Elasticity of 35 Thoracic and 16 Abdominal Human Aortas in Vitro Described by a Five Component Model
,”
J. Biomech.
,
18
(
8
), pp.
613
620
.
15.
Imura
,
T.
,
Yamamoto
,
K.
,
Satoh
,
T.
,
Kanamori
,
K.
,
Mikami
,
T.
, and
Yasuda
,
H.
, 1990, “
In Vivo Viscoelastic Behavior in the Human Aorta
,”
Circ. Res.
,
66
(
5
), pp.
1413
1419
.
16.
Valdez-Jasso
,
D.
,
Haider
,
M. A.
,
Banks
,
H. T.
,
Santana
,
D. B.
,
Germán
,
Y. Z.
,
Armentano
,
R. L.
, and
Olufsen
,
M. S.
, 2009, “
Analysis of Viscoelastic Wall Properties in Ovine Arteries
,”
IEEE Trans. Biomed. Eng.
,
56
(
2
), pp.
210
219
.
17.
Alastruey
,
J.
,
Parker
,
K. H.
,
Peiró
,
J.
,
Byrd
,
S. M.
, and
Sherwin
,
S. J.
, 2007, “
Modelling the Circle of Willis to Assess the Effects of Anatomical Variations and Occlusions on Cerebral Flows
,”
J. Biomech.
,
40
(
8
), pp.
1794
1805
.
18.
Azer
,
K.
, and
Peskin
,
C. S.
, 2007, “
A One-Dimensional Model of Blood Flow in Arteries with Friction and Convection Based on the Womersley Velocity Profile
,”
Cardiovasc. Eng.
,
7
(
2
), pp.
51
73
.
19.
Bessems
,
D.
,
Rutten
,
M.
, and
Van De Vosse
,
F.
, 2007, “
A Wave Propagation Model of Blood Flow in Large Vessels Using an Approximate Velocity Profile Function
,”
J. Fluid Mech.
,
580
, pp.
145
168
.
20.
Huo
,
Y.
, and
Kassab
,
G. S.
, 2007, “
A Hybrid One-Dimensional/Womersley Model of Pulsatile Blood Flow in the Entire Coronary Arterial Tree
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
(
6
), pp.
H2623
H2633
.
21.
Steele
,
B. N.
,
Olufsen
,
M. S.
, and
Taylor
,
C. A.
, 2007, “
Fractal Network Model for Simulating Abdominal and Lower Extremity Blood Flow During Resting and Exercise Conditions
,”
Computer Methods in Biomechanics and Biomedical Engineering
,
10
(
1
), pp.
39
51
.
22.
Formaggia
,
L.
,
Lamponi
,
D.
,
Tuveri
,
M.
, and
Veneziani
,
A.
, 2006, “
Numerical Modeling of 1D Arterial Networks Coupled With a Lumped Parameters Description of the Heart
,”
Comput. Methods Biomech. Biomed. Eng.
,
9
(
5
), pp.
273
288
.
23.
Vignon
,
I. E.
, and
Taylor
,
C. A.
, 2004, “
Outflow Boundary Conditions for One-Dimensional Finite Element Modeling of Blood Flow and Pressure Waves in Arteries
,”
Wave Motion
,
39
, pp.
361
374
.
24.
Sherwin
,
S. J.
,
Franke
,
V.
,
Peiró
,
J.
, and
Parker
,
K.
, 2003, “
One-Dimensional Modelling of a Vascular Network in Space-Time Variables
,”
J. Eng. Math.
,
47
, pp.
217
250
.
25.
Wan
,
J.
,
Steele
,
B.
,
Spicer
,
S. A.
,
Strohband
,
S.
,
Feijóo
,
G. R.
,
Hughes
,
T. J. R.
, and
Taylor
,
C. A.
, 2002, “
A One-Dimensional Finite Element Method for Simulation-Based Medical Planning for Cardiovascular Disease
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
3
), pp.
195
206
.
26.
Smith
,
N. P.
,
Pullan
,
A. J.
, and
Hunter
,
P. J.
, 2001, “
An Anatomically Based Model of Transient Coronary Blood Flow in the Heart
,”
SIAM J. Appl. Math.
,
62
(
3
), pp.
990
1018
.
27.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
, 2000, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
,
28
, pp.
1281
1299
.
28.
Stergiopulos
,
N.
,
Young
,
D. F.
, and
Rogge
,
T. R.
, 1992, “
Computer Simulation of Arterial Flow With Applications to Arterial and Aortic Stenoses
,”
J. Biomech.
,
25
(
12
), pp.
1477
1488
.
29.
Papapanayotou
,
C. J.
,
Cherruault
,
Y.
, and
de La Rochefoucauld
,
B.
, 1990, “
A Mathematical Model of the Circle of Willis in the Presence of an Arteriovenous Anomaly
,”
Comput. Math. Appl.
,
20
(
4–6
), pp.
199
206
.
30.
Hillen
,
B.
,
Hoogstraten
,
H. W.
, and
Post
,
L.
, 1986, “
A Mathematical Model of the Flow in the Circle of Willis
,”
J. Biomech.
,
19
(
3
), pp.
187
194
.
31.
Zagzoule
,
M.
, and
Marc-Vergnes
,
J.-P.
, 1986, “
A Global Mathematical Model of the Cerebral Circulation in Man
,”
J. Biomech.
,
19
(
12
), pp.
1015
1022
.
32.
Kufahl
,
R. H.
, and
Clark
,
M. E.
, 1985, “
A Circle of Willis Simulation Using Distensible Vessels and Pulsatile Flow
,”
J. Biomech. Eng.
,
107
(
2
), pp.
112
122
.
33.
Stettler
,
J. C.
,
Niederer
,
P.
, and
Anliker
,
M.
, 1981, “
Theoretical Analysis of Arterial Hemodynamics Including the Influence of Bifurcations Part I: Mathematical Model and Prediction of Normal Pulse Patterns
,”
Ann. Biomed. Eng.
,
9
, pp.
145
164
.
34.
Stettler
,
J. C.
,
Niederer
,
P.
,
Anliker
,
M.
, and
Casty
,
M.
, 1981, “
Theoretical Analysis of Arterial Hemodynamics Including the Influence of Bifurcations Part II: Critical Evaluation of Theoretical Model and Comparison with Noninvasive Measurements of Flow Patterns in Normal and Pathological Cases
,”
Ann. Biomed. Eng.
,
9
, pp.
165
175
.
35.
Raines
,
J. K.
,
Jaffrin
,
M. Y.
, and
Shapiro
,
A. H.
, 1974, “
A Computer Simulation of Arterial Dynamics in the Human Leg
,”
J. Biomech.
,
7
, pp.
77
91
.
36.
Schaaf
,
B. W.
, and
Abbrecht
,
P. H.
, 1972, “
Digital Computer Simulation of Human Systemic Arterial Pulse Wave Transmission: A Nonlinear Model
,”
J. Biomech.
,
5
(
4
), pp.
345
364
.
37.
Wemple
,
R. R.
, and
Mockros
,
L. F.
, 1972, “
Pressure and Flow in the Systemic Arterial System
,”
J. Biomech.
,
5
, pp.
629
641
.
38.
Westerhof
,
N.
,
Bosman
,
F.
,
De Vries
,
C. J.
, and
Noordergraaf
,
A.
, 1969, “
Analog Studies of the Human Systemic Arterial Tree
,”
J. Biomech.
,
2
(
2
), pp.
121
143
.
39.
Noordergraaf
,
A.
,
Verdouw
,
P. D.
, and
Boom
,
H. B. K.
, 1963, “
The Use of an Analog Computer in a Circulation Model
,”
Progr. Cardiovasc. Dis.
,
5
(
5
), pp.
419
439
.
40.
Simon
,
A.
, and
Levenson
,
J.
, 2001, “
Effect of Hypertension on Viscoelasticity of Large arteries in Humans
,”
Curr. Hypertens. Rep.
,
3
(
1
), pp.
74
79
.
41.
Armentano
,
R. L.
,
Barra
,
J. G.
,
Santana
,
D. B.
,
Pessana
,
F. M.
,
Graf
,
S.
,
Craiem
,
D.
,
Brandani
,
L. M.
,
Baglivo
,
H. P.
, and
Sanchez
,
R. A.
, 2006, “
Smart Damping Modulation of Carotid Wall Energetics in Human Hypertension: Effects of Angiotensin-Converting Enzyme Inhibition
,”
Hypertension
,
47
(
3
), pp.
384
390
.
42.
Armentano
,
R.
,
Megnien
,
J. L.
,
Simon
,
A.
,
Bellenfant
,
F.
,
Barra
,
J.
, and
Levenson
,
J.
, 1995, “
Effects of Hypertension on Viscoelasticity of Carotid and Femoral Arteries in Humans
,”
Hypertension
,
26
, pp.
48
54
.
43.
Anliker
,
M.
,
Histand
,
M. B.
, and
Ogden
,
E.
, 1968, “
Dispersion and Attenuation of Small Artificial Pressure Waves in the Canine Aorta
,”
Circ. Res.
,
23
(
4
), pp.
539
551
.
44.
Avolio
,
A. P.
, 1980, “
Multi-Branched Model of the Human Arterial System
,”
Med. Biol. Eng. Comput.
,
18
(
6
), pp.
709
718
.
45.
Reuderink
,
P. J.
,
Hoogstraten
,
H. W.
,
Sipkema
,
P.
,
Hillen
,
B.
, and
Westerhof
,
N.
, 1989, “
Linear and Nonlinear One-Dimensional Models of Pulse Wave Transmission at High Womersley Numbers
,”
J. Biomech.
,
22
(
8/9
), pp.
819
827
.
46.
Fitchett
,
D. H.
, 1991, “
LV-Arterial Coupling: Interactive Model to Predict Effect of Wave Reflections on LV Energetics
,”
Am. J. Physiol. Heart Circ. Physiol.
,
261
, pp.
H1026
H1033
.
47.
Segers
,
P.
,
Stergiopulos
,
N.
,
Verdonck
,
P.
, and
Verhoeven
,
R.
, 1997, “
Assessment of Distributed Arterial Network Models
,”
Med. Biol. Eng. Comput.
,
35
(
6
), pp.
729
736
.
48.
Pontrelli
,
G.
, 2002, “
A Mathematical Model of Flow in a Liquid-Filled Visco-Elastic Tube
,”
Med. Biol. Eng. Comput.
,
40
(
5
), pp.
550
556
.
49.
Formaggia
,
L.
,
Lamponi
,
D.
, and
Quarteroni
A.
, 2003, “
One-Dimensional Models for Blood Flow in Arteries
,”
J. Eng. Math.
,
47
(
3
), pp.
251
276
.
50.
Bessems
,
D.
,
Giannopapa
,
C. G.
,
Rutten
,
M. C. M.
, and
van de Vosse
,
F. N.
, 2008, “
Experimental Validation of a Time-Domain-Based Wave Propagation Model of Blood Flow in Viscoelastic Vessels
,”
J. Biomech.
,
41
, pp.
284
291
.
51.
Reymond
,
P.
,
Merenda
,
F.
,
Perren
,
F.
,
Rüfenacht
,
D.
, and
Stergiopulos
,
N.
, 2009, “
Validation of a One-Dimensional Model of the Systemic Arterial Tree
,”
Am. J. Physiol. Heart Circ. Physiol.
,
297
, pp.
H208
H222
.
52.
Blanco
,
P. J.
,
Urquiza
,
S. A.
, and
Feijóo
,
R. A.
, 2010, “
Assessing the Influence of Heart Rate in Local Hemodynamics Through Coupled 3D–1D–0D Models
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
(
April
), pp.
890
903
.
53.
Hughes
,
T. J. R.
, and
Lubliner
,
J.
, 1973, “
On the One-Dimensional Theory of Blood Flow in the Larger Vessels
,”
Math. Biosci.
,
18
(
1–2
), pp.
161
170
.
54.
Roache
P. J.
, 2002, “
Code Verification by the Method of Manufactured Solutions
,”
J. Fluids Eng.
,
124
, pp.
4
10
.
55.
Knupp
,
P.
, and
Salari
K.
, 2002,
Verification of Computer Codes in Computational Science and Engineering
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
56.
Olufsen
,
M. S.
, 1999, “
Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
276
, pp.
257
268
.
57.
Puso
,
M. A.
, and
Weiss
,
J. A.
, 1998, “
Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation
,”
J. Biomech. Eng.
,
120
(
1
), pp.
62
70
.
58.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
, 2002, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis
,”
Eur. J. Mech. A/Solids
,
21
, pp.
441
463
.
59.
Raghu
,
R.
, and
Taylor
,
C. A.
, 2011, “
Verification of a One-Dimensional Finite Element Method for Modeling Blood Flow in the Cardiovascular System Incorporating a Viscoelastic Wall Model
,”
Finite Elem. Anal. Design
,
47
(
6
), pp.
586
592
.
60.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2010, “
Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.
61.
Yeung
,
J. J.
,
Kim
,
H. J.
,
Abbruzzese
,
T. A.
,
Vignon-Clementel
,
I. E.
,
Draney-Blomme
,
M. T.
,
Yeung
,
K. K.
,
Perkash
,
I.
,
Herfkens
,
R. J.
,
Taylor
,
C. A.
, and
Dalman
R. L.
, 2006, “
Aortoiliac Hemodynamic and Morphologic Adaptation to Chronic Spinal Cord Injury
,”
J. Vasc. Surg.
,
44
(
6
), pp.
1254
1265.e1
.
62.
Les
,
A. S.
,
Shadden
,
S. C.
,
Figueroa
,
C. A.
,
Park
,
J. M.
,
Tedesco
,
M. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
C. A.
, 2010, “
Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1288
1313
.
63.
Milnor
,
W. R.
, 1989,
Hemodynamics
,
Williams & Wilkins
,
Baltimore, MD
.
You do not currently have access to this content.