The evolution of implant stability in bone tissue remains difficult to assess because remodeling phenomena at the bone-implant interface are still poorly understood. The characterization of the biomechanical properties of newly formed bone tissue in the vicinity of implants at the microscopic scale is of importance in order to better understand the osseointegration process. The objective of this study is to investigate the potentiality of micro-Brillouin scattering techniques to differentiate mature and newly formed bone elastic properties following a multimodality approach using histological analysis. Coin-shaped Ti–6Al–4V implants were placed in vivo at a distance of 200μm from rabbit tibia leveled cortical bone surface, leading to an initially empty cavity of 200μm×4.4mm. After 7 weeks of implantation, the bone samples were removed, fixed, dehydrated, embedded in methyl methacrylate, and sliced into 190μm thick sections. Ultrasonic velocity measurements were performed using a micro-Brillouin scattering device within regions of interest (ROIs) of 10μm diameter. The ROIs were located in newly formed bone tissue (within the 200μm gap) and in mature bone tissue (in the cortical layer of the bone sample). The same section was then stained for histological analysis of the mineral content of the bone sample. The mean values of the ultrasonic velocities were equal to 4.97×103m/s in newly formed bone tissue and 5.31×103m/s in mature bone. Analysis of variance (p=2.42×104) tests revealed significant differences between the two groups of measurements. The standard deviation of the velocities was significantly higher in newly formed bone than in mature bone. Histological observations allow to confirm the accurate locations of the velocity measurements and showed a lower degree of mineralization in newly formed bone than in the mature cortical bone. The higher ultrasonic velocity measured in newly formed bone tissue compared with mature bone might be explained by the higher mineral content in mature bone, which was confirmed by histology. The heterogeneity of biomechanical properties of newly formed bone at the micrometer scale may explain the higher standard deviation of velocity measurements in newly formed bone compared with mature bone. The results demonstrate the feasibility of micro-Brillouin scattering technique to investigate the elastic properties of newly formed bone tissue.

1.
Chang
,
P. C.
,
Lang
,
N. P.
, and
Giannobile
,
W. V.
, 2010, “
Evaluation of Functional Dynamics During Osseointegration and Regeneration Associated With Oral Implants
,”
Clin. Oral Implants Res.
0905-7161,
21
(
1
), pp.
1
12
.
2.
Frost
,
H. M.
, 2003, “
Bone’s Mechanostat: A 2003 Update
,”
Anat. Rec. Part A
1552-4892,
275
(
2
), pp.
1081
1101
.
3.
Rabel
,
A.
,
Kohler
,
S. G.
, and
Schmidt-Westhausen
,
A. M.
, 2007, “
Clinical Study on the Primary Stability of Two Dental Implant Systems With Resonance Frequency Analysis
,”
Clin. Oral Investig.
1432-6981,
11
(
3
), pp.
257
265
.
4.
Meredith
,
N.
, 1998, “
Assessment of Implant Stability as a Prognostic Determinant
,”
Int. J. Prosthodont
0893-2174,
11
(
5
), pp.
491
501
.
5.
Pilliar
,
R. M.
,
Lee
,
J. M.
, and
Maniatopoulos
,
C.
, 1986, “
Observations on the Effect of Movement on Bone Ingrowth Into Porous-Surfaced Implants
,”
Clin. Orthop. Relat. Res.
0009-921X,
208
, pp.
108
113
.
6.
Luo
,
G. M.
,
Sadegh
,
A. M.
,
Alexander
,
H.
,
Jaffe
,
W.
,
Scott
,
D.
, and
Cowin
,
S. C.
, 1999, “
The Effect of Surface Roughness on the Stress Adaptation of Trabecular Architecture Around a Cylindrical Implant
,”
J. Biomech.
0021-9290,
32
(
3
), pp.
275
284
.
7.
Winter
,
W.
,
Heckmann
,
S. M.
, and
Weber
,
H. P.
, 2004, “
A Time-Dependent Healing Function for Immediate Loaded Implants
,”
J. Biomech.
0021-9290,
37
(
12
), pp.
1861
1867
.
8.
Chang
,
M. C.
,
Ko
,
C. C.
,
Liu
,
C. C.
,
Douglas
,
W. H.
,
DeLong
,
R.
,
Seong
,
W. J.
,
Hodges
,
J.
, and
An
,
K. N.
, 2003, “
Elasticity of Alveolar Bone Near Dental Implant-Bone Interfaces After One Month’s Healing
,”
J. Biomech.
0021-9290,
36
(
8
), pp.
1209
1214
.
9.
Seong
,
W. J.
,
Kim
,
U. K.
,
Swift
,
J. Q.
,
Hodges
,
J. S.
, and
Ko
,
C. C.
, 2009, “
Correlations Between Physical Properties of Jawbone and Dental Implant Initial Stability
,”
J. Prosthet. Dent.
0022-3913,
101
(
5
), pp.
306
318
.
10.
Rønold
,
H. J.
, and
Ellingsen
,
J. E.
, 2002, “
The Use of a Coin Shaped Implant for Direct In Situ Measurement of Attachment Strength for Osseointegrating Biomaterial Surfaces
,”
Biomaterials
0142-9612,
23
(
10
), pp.
2201
2209
.
11.
Rønold
,
H. J.
,
Ellingsen
,
J. E.
, and
Lyngstadaas
,
S. P.
, 2003, “
Tensile Force Testing of Optimized Coin-Shaped Titanium Implant Attachment Kinetics in the Rabbit Tibiae
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
14
(
10
), pp.
843
849
.
12.
Rønold
,
H. J.
, and
Ellingsen
,
J. E.
, 2002, “
Effect of Micro-Roughness Produced by TiO2 Blasting-Tensile Testing of Bone Attachment by Using Coin-Shaped Implants
,”
Biomaterials
0142-9612,
23
(
21
), pp.
4211
4219
.
13.
Rønold
,
H. J.
,
Lyngstadaas
,
S. P.
, and
Ellingsen
,
J. E.
, 2003, “
A Study on the Effect of Dual Blasting With TiO2 on Titanium Implant Surfaces on Functional Attachment in Bone
,”
J. Biomed. Mater. Res. Part A
1549-3296,
67A
(
2
), pp.
524
530
.
14.
Rønold
,
H. J.
,
Lyngstadaas
,
S. P.
, and
Ellingsen
,
J. E.
, 2003, “
Analysing the Optimal Value for Titanium Implant Roughness in Bone Attachment Using a Tensile Test
,”
Biomaterials
0142-9612,
24
(
25
), pp.
4559
4564
.
15.
Zysset
,
P. K.
,
Guo
,
X. E.
,
Hoffler
,
C. E.
,
Moore
,
K. E.
, and
Goldstein
,
S. A.
, 1999, “
Elastic Modulus and Hardness of Cortical and Trabecular Bone Lamellae Measured by Nanoindentation in the Human Femur
,”
J. Biomech.
0021-9290,
32
(
10
), pp.
1005
1012
.
16.
Laugier
,
P.
, and
Haiat
,
G.
, Bone Quantitative Ultrasound.
17.
Mathieu
,
V.
,
Anagnostou
,
F.
,
Soffer
,
E.
, and
Haiat
,
G.
, “
Ultrasonic Evaluation of Dental Implant Biomechanical Stability: An In Vitro Study
,”
Ultrasound Med. Biol.
0301-5629, in press.
18.
Meunier
,
A.
,
Katz
,
J. L.
,
Christel
,
P.
, and
Sedel
,
L.
, 1988, “
A Reflection Scanning Acoustic Microscope for Bone and Bone-Biomaterials Interface Studies
,”
J. Orthop. Res.
0736-0266,
6
(
5
), pp.
770
775
.
19.
Turner
,
C. H.
,
Rho
,
J.
,
Takano
,
Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
, 1999, “
The Elastic Properties of Trabecular and Cortical Bone Tissues Are Similar: Results From Two Microscopic Measurement Techniques
,”
J. Biomech.
0021-9290,
32
(
4
), pp.
437
441
.
20.
Nomura
,
T.
,
Gold
,
E.
,
Powers
,
M. P.
,
Shingaki
,
S.
,
Saito
,
C.
, and
Katz
,
J. L.
, 2006, “
A Clinical Case Report: Interface Analysis of a Successful Well-Functioning Transmandibular Implant From a Cadaver Mandible
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
77B
(
2
), pp.
213
218
.
21.
Sakamoto
,
M.
,
Kawabe
,
M.
,
Matsukawa
,
M.
,
Koizumi
,
N.
, and
Ohtori
,
N.
, 2008, “
Measurement of Wave Velocity in Bovine Bone Tissue by Micro-Brillouin Scattering
,”
Jpn. J. Appl. Phys.
0021-4922,
47
(
5
), pp.
4205
4208
.
22.
Kawabe
,
M.
,
Matsukawa
,
M.
, and
Ohtori
,
N.
, 2010, “
Measurement of Wave Velocity Distribution in a Trabecula by Micro-Brillouin Scattering
,”
Jpn. J. Appl. Phys.
0021-4922,
49
, p.
07HB05
.
23.
Viceconti
,
M.
,
Brusi
,
G.
,
Pancanti
,
A.
, and
Cristofolini
,
L.
, 2006, “
Primary Stability of an Anatomical Cementless Hip Stem: A Statistical Analysis
,”
J. Biomech.
0021-9290,
39
(
7
), pp.
1169
1179
.
24.
Viceconti
,
M.
,
Monti
,
L.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
, and
Toni
,
A.
, 2001, “
Even a Thin Layer of Soft Tissue May Compromise the Primary Stability of Cementless Hip Stems
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
(
9
), pp.
765
775
.
25.
Chevallier
,
N.
,
Anagnostou
,
F.
,
Zilber
,
S.
,
Bodivit
,
G.
,
Maurin
,
S.
,
Barrault
,
A.
,
Bierling
,
P.
,
Hernigou
,
P.
,
Layrolle
,
P.
, and
Rouard
,
H.
, 2010, “
Osteoblastic Differentiation of Human Mesenchymal Stem Cells With Platelet Lysate
,”
Biomaterials
0142-9612,
31
(
2
), pp.
270
278
.
26.
Soffer
,
E.
,
Ouhayoun
,
J. P.
,
Meunier
,
A.
, and
Anagnostou
,
F.
, 2006, “
Effects of Autologous Platelet Lysates on Ceramic Particle Resorption and New Bone Formation in Critical Size Defects: The Role of Anatomical Sites
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
79B
(
1
), pp.
86
94
.
27.
Damzen
,
M. J.
,
Vlad
,
V. I.
,
Babin
,
V.
, and
Mocofanescu
,
A.
, 2003,
Stimulated Brillouin Scattering: Fundamentals and Applications
,
IOP
,
London
.
28.
Sandercock
,
J. R.
, 1982, “
Trends in Brillouin-Scattering: Studies of Opaque Materials, Supported Films, and Central Modes
,”
Light Scattering in Solids III. Recent Results
,
M.
Cardona
and
G.
Guntherodt
, eds.,
Springer
,
Berlin
, p.
173
.
29.
Krüger
,
J. K.
,
Embs
,
J.
,
Brierley
,
J.
, and
Jimenez
,
R.
, 1998, “
A New Brillouin Scattering Technique for the Investigation of Acoustic and Opto-Acoustic Properties: Application to Polymers
,”
J. Phys. D: Appl. Phys.
0022-3727,
31
(
15
), pp.
1913
1917
.
30.
Speziale
,
S.
,
Jiang
,
F.
,
Caylor
,
C. L.
,
Kriminski
,
S.
,
Zha
,
C. S.
,
Thorne
,
R. E.
, and
Duffy
,
T. S.
, 2003, “
Sound Velocity and Elasticity of Tetragonal Lysozyme Crystals by Brillouin Spectroscopy
,”
Biophys. J.
0006-3495,
85
(
5
), pp.
3202
3213
.
31.
Lees
,
S.
, and
Klopholz
,
D. Z.
, 1992, “
Sonic Velocity and Attenuation in Wet Compact Cow Femur for the Frequency-Range 5 to 100 MHz
,”
Ultrasound Med. Biol.
0301-5629,
18
(
3
), pp.
303
308
.
32.
Yamato
,
Y.
,
Matsukawa
,
M.
,
Otani
,
T.
,
Yamazaki
,
K.
, and
Nagano
,
A.
, 2006, “
Distribution of Longitudinal Wave Properties in Bovine Cortical Bone In Vitro
,”
Ultrasonics
0041-624X,
44
, pp.
e233
e237
.
33.
Bensamoun
,
S.
,
Tho
,
M. C. H.
,
Luu
,
S.
,
Gherbezza
,
J. M.
, and
de Belleval
,
J. F.
, 2004, “
Spatial Distribution of Acoustic and Elastic Properties of Human Femoral Cortical Bone
,”
J. Biomech.
0021-9290,
37
(
4
), pp.
503
510
.
34.
Haïat
,
G.
,
Sasso
,
M.
,
Naili
,
S.
, and
Matsukawa
,
M.
, 2008, “
Ultrasonic Velocity Dispersion in Bovine Cortical Bone: An Experimental Study
,”
J. Acoust. Soc. Am.
0001-4966,
124
(
3
), pp.
1811
1821
.
35.
Sansalone
,
V.
,
Naili
,
S.
,
Bousson
,
V.
,
Bergot
,
C.
,
Peyrin
,
F.
,
Zarka
,
J.
,
Laredo
,
J. D.
, and
Haiat
,
G.
, 2010, “
Determination of the Heterogeneous Anisotropic Elastic Properties of Human Femoral Bone: From Nanoscopic to Organ Scale
,”
J. Biomech.
0021-9290,
43
(
10
),
1857
1863
.
36.
Clark
,
P. A.
,
Clark
,
A. M.
,
Rodriguez
,
A.
,
Hussain
,
M. A.
, and
Mao
,
J. J.
, 2007, “
Nanoscale Characterization of Bone-Implant Interface and Biomechanical Modulation of Bone Ingrowth
,”
Mater. Sci. Eng., C
0928-4931,
27
(
3
), pp.
382
393
.
37.
Ballarre
,
J.
,
Manjubala
,
I.
,
Schreiner
,
W. H.
,
Orellano
,
J. C.
,
Fratzl
,
P.
, and
Cere
,
S.
, 2010, “
Improving the Osteointegration and Bone-Implant Interface by Incorporation of Bioactive Particles in Sol-Gel Coatings of Stainless Steel Implants
,”
Acta Biomater.
1742-7061,
6
(
4
), pp.
1601
1609
.
38.
Artzi
,
Z.
,
Givol
,
N.
,
Rohrer
,
M. D.
,
Nemcovsky
,
C. E.
,
Prasad
,
H. S.
, and
Tal
,
H.
, 2003, “
Qualitative and Quantitative Expression of Bovine Bone Mineral in Experimental Bone Defects. Part 1: Description of a Dog Model and Histological Observations
,”
J. Periodontol.
0022-3492,
74
(
8
), pp.
1143
1152
.
39.
Artzi
,
Z.
,
Givol
,
N.
,
Rohrer
,
M. D.
,
Nemcovsky
,
C. E.
,
Prasad
,
H. S.
, and
Tal
,
H.
, 2003, “
Qualitative and Quantitative Expression of Bovine Bone Mineral in Experimental Bone Defects. Part 2: Morphometric Analysis
,”
J. Periodontol.
0022-3492,
74
(
8
), pp.
1153
1160
.
40.
Cunningham
,
J. L.
,
Kenwright
,
J.
, and
Kershaw
,
C. J.
, 1990, “
Biomechanical Measurement of Fracture-Healing
,”
J. Med. Eng. Technol.
0309-1902,
14
(
3
), pp.
92
101
.
41.
Gerlanc
,
M.
,
Haddad
,
D.
,
Hyatt
,
G. W.
,
Langloh
,
J. T.
, and
Sthilaire
,
P.
, 1975, “
Ultrasonic Study of Normal and Fractured Bone
,”
Clin. Orthop. Relat. Res.
0009-921X,
111
, pp.
175
180
.
42.
Hellmich
,
C.
,
Barthelemy
,
J. F.
, and
Dormieux
,
L.
, 2004, “
Mineral-Collagen Interactions in Elasticity of Bone Ultrastructure—A Continuum Micromechanics Approach
,”
Eur. J. Mech. A/Solids
0997-7538,
23
(
5
), pp.
783
810
.
43.
Raum
,
K.
, 2008, “
Microelastic Imaging of Bone
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
55
(
7
), pp.
1417
1431
.
44.
Raum
,
K.
,
Hofmann
,
T.
,
Leguerney
,
I.
,
Saied
,
A.
,
Peyrin
,
F.
,
Vico
,
L.
, and
Laugier
,
P.
, 2007, “
Variations of Microstructure, Mineral Density and Tissue Elasticity in B6/C3H Mice
,”
Bone
,
41
(
6
), pp.
1017
1024
.
45.
Raum
,
K.
,
Cleveland
,
R. O.
,
Peyrin
,
F.
, and
Laugier
,
P.
, 2006, “
Derivation of Elastic Stiffness From Site-Matched Mineral Density and Acoustic Impedance Maps
,”
Phys. Med. Biol.
0031-9155,
51
(
3
), pp.
747
758
.
46.
Yamato
,
Y.
,
Matsukawa
,
M.
,
Yanagitani
,
T.
,
Yamazaki
,
K.
,
Mizukawa
,
H.
, and
Nagano
,
A.
, 2008, “
Correlation Between Hydroxyapatite Crystallite Orientation and Ultrasonic Wave Velocities in Bovine Cortical Bone
,”
Calcif. Tissue Int.
0171-967X,
82
(
2
), pp.
162
169
.
47.
Bensamoun
,
S.
,
Gherbezza
,
J. M.
,
de Belleval
,
J. F.
, and
Tho
,
M.
, 2004, “
Transmission Scanning Acoustic Imaging of Human Cortical Bone and Relation With the Microstructure
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
(
6
), pp.
639
647
.
You do not currently have access to this content.