Pulse wave evaluation is an effective method for arteriosclerosis screening. In a previous study, we verified that pulse waveforms change markedly due to arterial stiffness. However, a pulse wave consists of two components, the incident wave and multireflected waves. Clarification of the complicated propagation of these waves is necessary to gain an understanding of the nature of pulse waves in vivo. In this study, we built a one-dimensional theoretical model of a pressure wave propagating in a flexible tube. To evaluate the applicability of the model, we compared theoretical estimations with measured data obtained from basic tube models and a simple arterial model. We constructed different viscoelastic tube set-ups: two straight tubes; one tube connected to two tubes of different elasticity; a single bifurcation tube; and a simple arterial network with four bifurcations. Soft polyurethane tubes were used and the configuration was based on a realistic human arterial network. The tensile modulus of the material was similar to the elasticity of arteries. A pulsatile flow with ejection time 0.3 s was applied using a controlled pump. Inner pressure waves and flow velocity were then measured using a pressure sensor and an ultrasonic diagnostic system. We formulated a 1D model derived from the Navier-Stokes equations and a continuity equation to characterize pressure propagation in flexible tubes. The theoretical model includes nonlinearity and attenuation terms due to the tube wall, and flow viscosity derived from a steady Hagen-Poiseuille profile. Under the same configuration as for experiments, the governing equations were computed using the MacCormack scheme. The theoretical pressure waves for each case showed a good fit to the experimental waves. The square sum of residuals (difference between theoretical and experimental wave-forms) for each case was <10.0%. A possible explanation for the increase in the square sum of residuals is the approximation error for flow viscosity. However, the comparatively small values prove the validity of the approach and indicate the usefulness of the model for understanding pressure propagation in the human arterial network.

References

1.
Nichols
,
W. W.
, and
O’Rourke
,
M. F.
, 2005,
McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles
, 5th edition,
Hodder Arnold
,
London
.
2.
Mitchell
,
G. F.
,
Parise
,
H.
,
Benjamin
,
E. J.
,
Larson
,
M. G.
,
Keyes
,
M. J.
,
Vita
,
J. A.
,
Vasan
,
R. S.
, and
Levy
,
D.
, 2004, “
Changes in Arterial Stiffness and Wave Reflection With Advancing Age in Healthy Men and Women
,”
Hypertension
,
43
, pp.
1239
1245
.
3.
Saito
,
M.
,
Yamamoto
,
Y.
,
Matsukawa
,
M.
,
Watanabe
,
Y.
,
Furuya
,
M.
, and
Asada
,
T.
, 2009, “
Simple Analysis of the Pulse Wave for Blood Vessel Evaluation
,”
Jpn. J. Appl. Phys.
,
48
, pp.
1
4
.
4.
Hope
,
S. A.
,
Tay
,
D. B.
,
Meredith
,
I. T.
, and
Cameron
,
J. D.
, 2005, “
Waveform Dispersion, Not Reflection, May Be the Major Determinant of Aortic Pressure Wave Morphology
,”
Am. J. Physiol.
,
289
, pp.
H2497
H2502
.
5.
Murgo
,
J. P.
,
Westerhof
,
N.
,
Giolma
,
J. P.
, and
Altobelli
,
S. A.
, 1980, “
Aortic Input Impedance in Normal Man—Relationship to Pressure Wave Forms
,”
Circulation
,
62
, pp.
105
116
.
6.
Murgo
,
J. P.
,
Westerhof
,
N.
,
Giolma
,
J. P.
, and
Altobelli
,
S. A.
, 1981, “
Manipulation of Ascending Aortic Pressure and Flow Wave Reflections With the Valsalva Maneuver: Relationship to Input Impedance
,”
Circulation
,
63
, pp.
122
132
.
7.
Latham
,
R. D.
,
Westerhof
,
N.
,
Sipkema
,
P.
,
Rubal
,
B. J.
,
Reuderink
,
P.
, and
Murgo
,
J. P.
, 1985, “
Regional Wave Travel and Reflections Along the Human Aorta—A Study With Six Simultaneous Micromanometric Pressures
,”
Circulation
,
72
, pp.
1257
1269
.
8.
Hofmann
,
W.
, and
Balásházy
,
I.
, 1991, “
Particle Deposition Patterns Within Airway Bifurcations—Solution of the 3D Navier-Stokes Equation
,”
Radiat. Prot. Dosim.
,
38
, pp.
57
63
.
9.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
,
28
, pp.
845
856
.
10.
Theodorakakos
,
A.
,
Gavaises
,
M.
,
Andriotis
,
A.
,
Zifan
,
A.
,
Liatsis
,
P.
,
Pantos
,
I.
,
Efstathopoulos
,
E. P.
, and
Katritsis
,
D.
, 2008, “
Simulation of Cardiac Motion on Non-Newtonian, Pulsating Flow Development in the Human Left Anterior Descending Coronary Artery
,”
Phys. Med. Biol.
,
53
, pp.
4875
4892
.
11.
Dong
,
S.
,
Insley
,
J.
,
Karonis
,
N. T.
,
Papka
,
M. E.
,
Binns
,
J.
, and
Karniadakis
,
G.
, 2006, “
Simulating and Visualizing the Human Arterial System on the TeraGrid
,”
Future Gener. Comput. Syst.
,
22
, pp.
1011
1017
.
12.
Isaksen
,
J. G.
,
Bazilevs
,
Y.
,
Kvamsdal
,
T.
,
Zhang
,
Y.
,
Kaspersen
,
J. H.
,
Waterloo
,
K.
,
Romner
,
B.
, and
Ingebrigtsen
,
T.
, 2008, “
Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation
,”
Stroke
,
39
, pp.
3172
3178
.
13.
Lagrée
,
P.-Y.
, 2000, “
An Inverse Technique to Deduce the Elasticity of a Large Artery
,”
Eur. Phys. J. Appl. Phys.
,
9
, pp.
153
163
.
14.
Fullana
,
J.
, and
Zaleski
,
S.
, 1999, “
A Branched One-Dimensional Model of Vessel Networks
,”
J. Fluid Mech.
,
621
, pp.
183
204
.
15.
Zagzoule
,
M.
, and
Marc-Vergnes
,
J.
, 1986, “
A Global Mathematical Model of the Cerebral Circulation in Man
,”
J. Biomech.
,
19
(12), pp.
1015
1022
.
16.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
, 2000, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
,
28
, pp.
1281
1299
.
17.
Marchandise
,
E.
,
Willemet
,
M.
, and
Lacroix
,
V.
, 2009, “
A Numerical Hemodynamic Tool for Predictive Vascular Surgery
,”
Med. Eng. Phys.
,
31
, pp.
131
144
.
18.
van de Vosse
,
F.
, and
Stergiopulos
,
N.
, 2011, “
Pulse Wave Propagation in the Arterial Tree
,”
Annu. Rev. Fluid Mech.
,
43
, pp.
467
499
.
19.
Pedley
,
T. J.
, 1980,
The Fluid Mechanics of Large Blood Vessels
,
Cambridge University Press
,
Cambridge, U.K
.
20.
Bessems
,
D.
,
Rutten
,
M.
, and
van de Vosse
,
F.
, 2001, “
A Wave Propagation Model of Blood Flow in Large Vessels Using an Approximate Velocity Profile Function
,”
J. Fluid Mech.
,
580
, pp.
145
168
.
21.
Willemet
,
M.
,
Lacroix
,
V.
, and
Marchandise
,
E.
, 2011, “
Inlet Boundary Conditions for Blood Flow Simulations in Truncated Arterial Networks
,”
J. Biomech.
,
44
, pp.
897
903
.
22.
Xiu
,
D.
, and
Sherwin
,
S. J.
, 2007, “
Parametric Uncertainty Analysis of Pulse Wave Propagation in a Model of a Human Arterial Network
,”
J. Comput. Phys.
,
226
, pp.
1385
1407
.
23.
Cohen
,
I. M.
,
Kundu
,
P. K.
, and
Hu
,
H. H.
, 2004,
Fluid Mechanics
, 3rd edition,
Elsevier
,
New York
.
24.
van de Vosse
,
F.
, and
van Dongen
,
M. E. H.
, 1998, “
Cardiovascular Fluid Mechanics—Lecture Notes
,”
Faculty of Applied Physics, Faculty of Mechanical Engineering
,
Eindhoven University of Technology
,
Eindhoven, Netherlands
.
25.
Westerhof
,
N.
,
Bosman
,
F.
,
De Vries
,
C. J.
, and
Noordergraaf
,
A.
, 1969, “
Analog Studies of the Human Systemic Arterial Tree
,”
J. Biomech.
,
2
, pp.
121
143
.
26.
Lorthois
,
S.
,
Lagrée
,
P.-Y.
,
Marc-Vergnes
,
J.-P.
, and
Cassot
,
F.
, 2000, “
Maximal Wall Shear Stress in Arterial Stenoses: Application to the Internal Carotid Arteries
,”
J. Biomech. Eng.
,
122
(
6
), pp.
661
666
.
27.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2010, “
Outflow Boundary Conditions for 3D Simulations of Non-periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Meth. Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.
28.
Quarteroni
,
A.
,
Ragni
,
S.
, and
Veneziani
,
A.
, 2001, “
Coupling Between Lumped and Distributed Models for Blood Flow Problems
,”
Comput. Visualization Sci.
,
4
(
2
), pp.
111
124
.
You do not currently have access to this content.