When there is a debonding at the bone-implant interface, the difference in stiffness between the implant and the bone can result in micromotion, allowing existing gaps to open further or new gaps to be created during physiological loading. It has been suggested that periprosthetic fluid flow and high pressure may play an important role in osteolysis development in the proximity of these gaps. To explain this phenomenon, the concepts of “effective joint space” and “pumping stem” have been cited in many studies. However, there is no clear understanding of the factors causing, or contributing to, these mechanisms. It is likely that capsular pressure, gap dimensions, and micromotion of the gap during cyclic loading of an implant can play a defining role in inducing periprosthetic flow. In order to obtain a better understanding of the main influences on periprosthetic flows and the development of osteolysis, steady state and transient 2D computational fluid dynamic simulations were performed for the joint capsule of the lateral side of a stem-femur system, and a gap in communication with the capsule and the surrounding bone. It was shown that high capsular pressure may be the main driving force for high fluid pressure and flow in the bone surrounding the gap, while micromotion of only very long and narrow gaps can cause significant pressure and flow in the bone. At low capsular pressure, micromotion induced large flows in the gap region; however, the flow in the bone tissue was almost unaffected. The results also revealed the existence of high velocity spikes in the bone region at the bottom of the gap. These velocity spikes can exert excessive fluid shear stress on the bone cells and disturb the local biological balance of the surrounding interstitial fluid which can result in osteolysis development. High capsular pressure was observed to be the main cause of these velocity spikes whereas, at low capsular pressure, gap micromotion of only very long and narrow gaps generated significant velocity spikes in the bone at the bottom of the gaps.

References

1.
Swedish Hip Arthroplasty Register
, “
Annual Report 2008
”.
2.
Harris
,
W. H.
, 1994, “
Osteolysis and Particle Disease in Hip-Replacement—A Review
,”
Acta Orthop. Scand.
,
65
(
1
), pp.
113
123
.
3.
Freeman
,
M. A.
, 1999, “
Radiolucent Lines: A Question of Nomenclature
,”
J. Arthroplasty
,
14
(
1
), pp.
1
,
2
.
4.
Iwaki
,
H.
,
Scott
,
G.
, and
Freeman
,
M.A. R.
, 2002, “
The Natural History and Significance of Radiolucent Lines at a Cemented Femoral Interface
,”
J. Bone Joint Surg. Br.
,
84B
(
4
), pp.
550
555
.
5.
Schmalzried
,
T. P.
, and
Callaghan
,
J. J.
, 1999, “
Wear in Total Hip and Knee Replacements
,”
J. Bone Joint Surg. Am.
,
81
(
1
), pp.
115
136
.
6.
Kobayashi
,
A.
,
Freeman
,
M. A. R.
,
Bonfield
,
W.
,
Kadoya
,
Y.
,
Yamac
,
T.
,
AlSaffar
,
N.
,
Scott
,
G.
, and
Revell
,
P. A.
, 1997, “
Number of Polyethylene Particles and Osteolysis in Total Joint Replacements—A Quantitative Study Using a Tissue-Digestion Method
,”
J. Bone Joint Surg. Br.
,
79B
(
5
), pp.
844
848
.
7.
Ingham
,
E.
, and
Fisher
,
J.
, 2000, “
Biological Reactions to Wear Debris in Total Joint Replacement
,”
Proc. Inst. Mech. Eng. [H]
,
214
(
H1
), pp.
21
37
.
8.
Aspenberg
,
P.
, and
van der Vis
,
H.
, 1998, “
Fluid Pressure May Cause Periprosthetic Osteolysis—Particles Are Not the Only Thing
,”
Acta Orthop. Scand.
,
69
(
1
), pp.
1
4
.
9.
van der Vis
,
H. M.
,
Aspenberg
,
P.
,
de Kleine
,
R.
,
Tigchelaar
,
W.
, and
van Noorden
,
C. J. F.
, 1998, “
Short Periods of Oscillating Fluid Pressure Directed at a Titanium-Bone Interface in Rabbits Lead to Bone Lysis
,”
Acta Orthop. Scand.
,
69
(
1
), pp.
5
10
.
10.
Skoglund
,
B.
, and
Aspenberg
,
P.
, 2003, “
Pmma Particles and Pressure—A Study of the Osteolytic Properties of Two Agents Proposed to Cause Prosthetic Loosening
,”
J. Orthop. Res.
,
21
(
2
), pp.
196
201
.
11.
Fahlgren
,
A.
,
Bostrom
,
M. P. G.
,
Yang
,
X.
,
Johansson
,
L.
,
Edlund
,
U.
,
Agholme
,
F.
, and
Aspenberg
,
P.
, 2010, “
Fluid Pressure and Flow as a Cause of Bone Resorption
,”
Acta Orthopaedica
,
81
(
4
), pp.
508
516
.
12.
Landells
,
J. W.
, 1953, “
The Bone Cysts of Osteoarthritis
,”
J. Bone Joint Surg. Br.
,
35-B
(
4
), pp.
643
649
.
13.
Wingstrand
,
H.
,
Wingstrand
,
A.
, and
Krantz
,
P.
, 1990, “
Intracapsular and Atmospheric-Pressure in the Dynamics and Stability of the Hip—A Biomechanical Study
,”
Acta Orthop. Scand.
,
61
(
3
), pp.
231
235
.
14.
Tarasevicius
,
S.
,
Kesteris
,
U.
,
Gelmanas
,
A.
,
Smailys
,
A.
, and
Wingstrand
,
H.
, 2007, “
Intracapsular Pressure and Elasticity of the Hip Joint Capsule in Osteoarthritis
,”
J. Arthroplasty
,
22
(
4
), pp.
596
600
.
15.
Goddard
,
N. J.
, and
Gosling
,
P. T.
, 1988, “
Intra-Articular Fluid Pressure and Pain in Osteoarthritis of the Hip
,”
J. Bone Joint Surg. Br.
,
70
(
1
), pp.
52
55
.
16.
Robertsson
,
O.
,
Wingstrand
,
H.
,
Kesteris
,
U.
,
Jonsson
,
K.
, and
Onnerfalt
,
R.
, 1997, “
Intracapsular Pressure and Loosening of Hip Prostheses—Preoperative Measurements in 18 Hips
,”
Acta Orthop. Scand.
,
68
(
3
), pp.
231
234
.
17.
Hendrix
,
R. W.
,
Wixson
,
R. L.
,
Rana
,
N. A.
, and
Rogers
L. F.
, 1983, “
Arthrography after Total Hip Arthroplasty: A Modified Technique Used in the Diagnosis of Pain
,”
Radiology
,
148
(
3
), pp.
647
652
.
18.
Morlock
,
M.
,
Schneider
,
E.
,
Bluhm
,
A.
,
Vollmer
,
M.
,
Bergmann
,
G.
,
Muller
,
V.
, and
Honl
,
M.
, 2001, “
Duration and Frequency of Every Day Activities in Total Hip Patients
,”
J. Biomech.
,
34
(
7
), pp.
873
881
.
19.
Jayson
,
M. I. V.
,
Rubenste
,
D.
, and
Dixon
,
A. S. J.
, 1970, “
Intra-Articular Pressure and Rheumatoid Geodes (Bone-Cysts)
,”
Ann. Rheum. Dis.
,
29
(
5
), pp.
496
498
.
20.
Anthony
,
P. P.
,
Gie
,
G. A.
,
Howie
,
C. R.
, and
Ling
,
R. S. M.
, 1990, “
Localized Endosteal Bone Lysis in Relation to the Femoral Components of Cemented Total Hip Arthroplasties
,”
J. Bone Joint Surg. Br.
,
72
(
6
), pp.
971
979
.
21.
Bauer
,
T. W.
, and
Schils
,
J.
, 1999, “
The Pathology of Total Joint Arthroplasty—II. Mechanisms of Implant Failure
,”
Skeletal Radiol.
,
28
(
9
), pp.
483
497
.
22.
Konttinen
,
Y. T.
,
Zhao
,
D. S.
,
Beklen
,
A.
,
Ma
,
G. F.
,
Takagi
,
M.
,
Kivela-Rajamaki
,
M.
,
Ashammakhi
,
N.
, and
Santavirta
,
S.
, 2005, “
The Microenvironment Around Total Hip Replacement Prostheses
,”
Clin. Orthop.
,
430
, pp.
28
38
.
23.
Mjoberg
,
B.
, 1994, “
Theories of Wear and Loosening in Hip Prostheses—Wear-Induced Loosening Vs Loosening-Induced Wear—a Review
,”
Acta Orthop. Scand.
,
65
(
3
), pp.
361
371
.
24.
Bartlett
,
G. E.
,
Beard
,
D. J.
,
Murray
,
D. W.
, and
Gill
,
H. S.
, 2008, “
The Femoral Stem Pump in Cemented Hip Arthroplasty: An in Vitro Model
,”
Med. Eng. Phys.
,
30
(
8
), pp.
1042
1048
.
25.
Viceconti
,
M.
,
Monti
,
L.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
, and
Toni
,
A.
, 2001, “
Even a Thin Layer of Soft Tissue May Compromise the Primary Stability of Cementless Hip Stems
,”
Clin. Biomech. (Bristol, Avon)
,
16
(
9
), pp.
765
775
.
26.
Park
,
Y.
,
Shin
,
H.
,
Choi
,
D.
,
Albert
,
C.
, and
Yoon
,
Y. S.
, 2008, “
Primary Stability of Cementless Stem in THA Improved With Reduced Interfacial Gaps
,”
J. Biomech. Eng.-T ASME
,
130
(
2
), p.
021008
.
27.
Howard
,
J. L.
,
Hui
,
A. J.
,
Bourne
,
R. B.
,
McCalden
,
R. W.
,
MacDonald
,
S. J.
, and
Rorabeck
,
C. H.
, 2004, “
A Quantitative Analysis of Bone Support Comparing Cementless Tapered and Distal Fixation Total Hip Replacements
,”
J. Arthroplasty
,
19
(
3
), pp.
266
273
.
28.
Cone
,
R. O.
,
Yaru
,
N.
,
Resnick
,
D.
,
Gershuni
,
D.
, and
Guerra
,
J.
, 1983, “
Intracapsular Pressure Monitoring During Arthrographic Evaluation of Painful Hip Prostheses
,”
Am. J. Roentgenol.
,
141
(
5
), pp.
885
889
.
29.
Arramon
,
Y. P.
, and
Nauman
,
E. A.
, 2000, “
The Intrinsic Permeability of Cancellous Bone
,”
Bone Mechanics
,
S. C.
Cowin
, ed.,
Informa Healthcare
,
New York
, Chap. 25.
30.
Bryant
,
J.
,
David
,
T.
,
Gaskell
,
P.
,
King
,
S.
, and
Lond
,
G.
, 1989, “
Rheology of Bovine Bone Marrow
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
203
(
2B
), pp.
71
15
.
31.
Li
,
G.
,
Bronk
,
J. T.
,
An
,
K. N.
, and
Kelly
,
P. J.
, 1987, “
Permeability of Cortical Bone of Canine Tibiae
,”
Microvasc. Res.
,
34
(
3
), pp.
302
310
.
32.
Cowin
,
S. C.
, 2000, “
Bone Poroelasticity
,”
Bone Biomechanics Handbook
,
S. C.
Cowin
, ed.,
CRC Press
,
Boca Raton
, Chap. Four, pp.
23
-21–23-
31
.
33.
Mckelvie
,
M. L.
, and
Palmer
,
S. B.
, 1991, “
The Interaction of Ultrasound With Cancellous Bone
,”
Phys. Med. Biol.
,
36
(
10
), pp.
1331
1340
.
34.
Hosokawa
,
A.
, and
Otani
,
T.
, 1997, “
Ultrasonic Wave Propagation in Bovine Cancellous Bone
,”
J. Acoust. Soc. Am.
,
101
(
1
), pp.
558
562
.
35.
Kohles
,
S. S.
, and
Roberts
,
J. B.
, 2002, “
Linear Poroelastic Cancellous Bone Anisotropy: Trabecular Solid Elastic and Fluid Transport Properties
,”
J. Biomech. Eng.-T ASME
,
124
(
5
), pp.
521
526
.
36.
Thompson
,
M. S.
,
Flivik
,
G.
,
Juliusson
,
R.
,
Odgaard
,
A.
, and
Ryd
,
L.
, 2004, “
A Comparison of Structural and Mechanical Properties in Cancellous Bone From the Femoral Head and Acetabulum
,”
Proc. Inst. Mech. Eng. [H]
,
218
(
H6
), pp.
425
429
.
37.
Shimko
,
D. A.
,
Shimko
,
V. F.
,
Sander
,
E. A.
,
Dickson
,
K. F.
, and
Nauman
,
E. A.
, 2005, “
Effect of Porosity on the Fluid Flow Characteristics and Mechanical Properties of Tantalum Scaffolds
,”
J. Biomed. Mater. Res. B
,
73B
(
2
), pp.
315
324
.
38.
Pakula
,
M.
,
Padilla
,
F.
,
Laugier
,
P.
, and
Kaczmarek
,
M.
, 2008, “
Application of Biot’s Theory to Ultrasonic Characterization of Human Cancellous Bones: Determination of Structural, Material, and Mechanical Properties
,”
J. Acoust. Soc. Am.
,
123
(
4
), pp.
2415
2423
.
39.
Zhang
,
D.
,
Weinbaum
,
S.
, and
Cowin
,
S. C.
, 1998, “
Estimates of the Peak Pressures in Bone Pore Water
,”
J. Biomech. Eng.-T ASME
,
120
(
6
), pp.
697
703
.
40.
Simkin
,
P. A.
,
Pickerell
,
C. C.
, and
Wallis
,
W. J.
, 1985, “
Hydraulic Resistance in Bones of the Canine Shoulder
,”
J. Biomech.
,
18
(
9
), pp.
657
.
41.
Kelly
,
P. J.
, 1968, “
Anatomy, Physiology, and Pathology of the Blood Supply of Bones
,”
J. Bone Joint Surg. Am.
,
50
(
4
), pp.
766
783
.
42.
Churchill
,
M. A.
,
Brookes
,
M.
, and
Spencer
,
J. D.
, 1992, “
The Blood Supply of the Greater Trochanter
,”
J. Bone Joint Surg. Br.
,
74
(
2
), pp.
272
274
.
43.
Bridgeman
,
G.
, and
Brookes
,
M.
, 1996, “
Blood Supply to the Human Femoral Diaphysis in Youth and Senescence
,”
J. Anat.
,
188
(
Pt. 3
), pp.
611
621
.
44.
Wingstrand
,
H.
, and
Wingstrand
,
A.
, 1997, “
Biomechanics of the Hip Joint Capsule - a Mathematical Model and Clinical Implications
,”
Clin. Biomech.
,
12
(
5
), pp.
273
280
.
45.
Prendergast
,
P. J.
,
Huiskes
,
R.
, and
Soballe
,
K.
, 1997, “
Biophysical Stimuli on Cells During Tissue Differentiation at Implant Interfaces
,”
J. Biomech.
,
30
(
6
), pp.
539
548
.
46.
Johansson
,
L.
,
Edlund
,
U.
,
Fahlgren
,
A.
, and
Aspenberg
,
P.
, 2009, “
Bone Resorption Induced by Fluid Flow
,”
J Biomech Eng-T Asme
,
131
(
9
), pp.
094505
(094501-094505).
47.
Abdul-Kadir
,
M. R.
, and
Kamsah
,
N.
, 2009, “
Interface Micromotion of Cementless Hip Stems in Simulated Hip Arthroplasty
,”
Am. J. Appl. Sci.
,
6
(
9
), pp.
1682
1689
.
48.
Burke
,
D. W.
,
Oconnor
,
D. O.
,
Zalenski
,
E. B.
,
Jasty
,
M.
, and
Harris
,
W. H.
, 1991, “
Micromotion of Cemented and Uncemented Femoral Components
,”
J. Bone Joint Surg. Br.
,
73
(
1
), pp.
33
37
.
49.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
, 2001, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
50.
Ansys Inc.
, Canonsburg, Pa., “
FLUENT Manual
, 2009,”
Section 18.4.1
.
51.
Carano
,
A.
,
Schlesinger
,
P. H.
,
Athanasou
,
N. A.
,
Teitelbaum
,
S. L.
, and
Blair
,
H. C.
, 1993, “
Acid and Base Effects on Avian Osteoclast Activity
,”
Am. J. Physiol.
,
264
(
3
), pp.
C694
C701
.
52.
McEvoy
,
A.
,
Jeyam
,
M.
,
Ferrier
,
G.
,
Evans
,
C. E.
, and
Andrew
,
J. G.
, 2002, “
Synergistic Effect of Particles and Cyclic Pressure on Cytokine Production in Human Monocyte/Macrophages: Proposed Role in Periprosthetic Osteolysis
,”
Bone
,
30
(
1
), pp.
171
177
.
53.
Maloney
,
W. J.
,
Jasty
,
M.
,
Harris
,
W. H.
,
Galante
,
J. O.
, and
Callaghan
,
J. J.
, 1990, “
Endosteal Erosion in Association With Stable Uncemented Femoral Components
,”
J. Bone Joint Surg. Am.
,
72A
(
7
), pp.
1025
1034
.
54.
Willert
,
H. G.
,
Bertram
,
H.
, and
Buchhorn
,
G. H.
, 1990, “
Osteolysis in Alloarthroplasty of the Hip—The Role of Ultra-High-Molecular-Weight Polyethylene Wear Particles
,”
Clin. Orthop.
,
258
, pp.
95
107
.
55.
Schmalzried
,
T. P.
,
Jasty
,
M.
, and
Harris
,
W. H.
, 1992, “
Periprosthetic Bone Loss in Total Hip Arthroplasty. Polyethylene Wear Debris and the Concept of the Effective Joint Space
,”
J. Bone Joint Surg. Am.
,
74
(
6
), pp.
849
863
.
56.
Zicat
,
B.
,
Engh
,
C. A.
, and
Gokcen
,
E.
, 1995, “
Patterns of Osteolysis Around Total Hip Components Inserted With and Without Cement
,”
J. Bone Joint Surg. Am.
,
77A
(
3
), pp.
432
439
.
57.
Vegter
,
J.
, 1987, “
The Influence of Joint Posture on Intraarticular Pressure—A Study of Transient Synovitis and Perthes-Disease
,”
J. Bone Joint Surg. Br.
,
69
(
1
), pp.
71
74
.
58.
Yuan
,
X. L.
Ryd
, and
Huiskes
,
R.
, 2000, “
Wear Particle Diffusion and Tissue Differentiation in TKA Implant Fibrous Interfaces
,”
J. Biomech.
,
33
(
10
), pp.
1279
1286
.
59.
von Knoch
,
M.
,
Engh
,
C. A.
,
Sychterz
,
C. J.
,
Engh
,
C. A.
, and
Willert
,
H. G.
, 2000, “
Migration of Polyethylene Wear Debris in One Type of Uncemented Femoral Component With Circumferential Porous Coating - an Autopsy Study of 5 Femurs
,”
J. Arthroplasty
,
15
(
1
), pp.
72
78
.
60.
Schmalzried
,
T. P.
,
Akizuki
,
K. H.
,
Fedenko
,
A. N.
, and
Mirra
,
J.
, 1997, “
The Role of Access of Joint Fluid to Bone in Periarticular Osteolysis—A Report of Four Cases
,”
J. Bone Joint Surg. Am.
,
79A
(
3
), pp.
447
452
.
You do not currently have access to this content.