A study of biphasic soft tissues contact is fundamental to understanding the biomechanical behavior of human diarthrodial joints. To date, biphasic-biphasic contact has been developed for idealized geometries and not been accessible for more general geometries. In this paper a finite element formulation is developed for contact of biphasic tissues. The augmented Lagrangian method is used to enforce the continuity of contact traction and fluid pressure across the contact interface, and the resulting method is implemented in the commercial software COMSOL Multiphysics. The accuracy of the implementation is verified using 2D axisymmetric problems, including indentation with a flat-ended indenter, indentation with spherical-ended indenter, and contact of glenohumeral cartilage layers. The biphasic finite element contact formulation and its implementation are shown to be robust and able to handle physiologically relevant problems.

References

1.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Mow
,
V. C.
, 1994, “
An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers
,”
J. Biomech.
,
27
, pp.
1347
1360
.
2.
Ateshian
,
G. A.
, and
Wang
,
H.
, 1995, “
A Theoretical Solution for the Frictionless Rolling Contact of Cylindrical Biphasic Articular Cartilage Layers
,”
J. Biomech.
,
28
, pp.
1341
1355
.
3.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
, 1997, “
An Improved Solution for the Contact of Two Biphasic Cartilage Layers
,”
J. Biomech.
,
30
, pp.
371
375
.
4.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
, 1998, “
Articular Joint Mechanics With Biphasic Cartilage Layers Under Dynamic Loading
,”
ASME J. Biomech. Eng.
,
120
, pp.
77
84
.
5.
Simo
,
J. C.
, and
Laursen
,
T. A.
, 1992, “
An Augmented Lagrangian Treatment of Contact Problems Involving Friction
,”
Comput. Struct.
,
42
, pp.
97
116
.
6.
Hou
,
J. S.
,
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1989, “
Boundary Conditions at the Cartilage-Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,”
ASME J. Biomech. Eng.
,
111
, pp.
78
87
.
7.
Donzelli
,
P. S.
, and
Spilker
,
R. L.
, 1998, “
A Contact Finite Element Formulation for Biological Soft Hydrated Tissues
,”
Comput. Methods Appl. Mech. Eng.
,
153
, pp.
63
79
.
8.
Donzelli
,
P. S.
,
Spilker
,
R. L.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 1999, “
Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure
,”
J. Biomech.
,
32
, pp.
1037
1047
.
9.
Yang
,
T.
, and
Spilker
,
R. L.
, 2007, “
A Lagrange Multiplier Mixed Finite Element Formulation for Three-Dimensional Contact of Biphasic Tissues
,”
ASME J. Biomech. Eng.
,
129
, pp.
457
471
.
10.
Chen
,
X.
,
Chen
,
Y.
, and
Hisada
,
T.
, 2005, “
Development of a Finite Element Procedure of Contact Analysis for Articular Cartilage With Large Deformation Based on the Biphasic Theory
,”
JSME Int. J. Ser. C
,
48
, pp.
537
546
.
11.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
, 2010, “
Finite Element Algorithm for Frictionless Contact of Porous Permeable Media Under Finite Deformation and Sliding
,”
ASME J. Biomech. Eng.
,
132
, p.
061006
.
12.
Federico
,
S.
,
Rosa
,
G. L.
,
Herzog
,
W.
, and
Wu
,
J. Z.
, 2004, “
Effect of Fluid Boundary Conditions on Joint Contact Mechanics and Applications to the Modeling of Osteoarthritic Joints
,”
ASME J. Biomech. Eng.
,
126
, pp.
220
225
(Erratum in 127, pp. 2205–2209).
13.
Pawaskar
,
S. S.
,
Fisher
,
J.
, and
Jin
,
Z.
, 2010, “
Robust and General Method for Determining Surface Fluid Flow Boundary Conditions in Articular Cartilage Contact Mechanics Modeling
,”
ASME J. Biomech. Eng.
,
132
, p.
031001
.
14.
Pawaskar
,
S. S.
,
Ingham
,
E.
,
Fisher
,
J.
, and
Jin
,
Z.
, 2011, “
Fluid Load Support and Contact Mechanics of Hemiarthroplasty in the Natural Hip Joint
,”
Med. Eng. Phys.
,
33
, pp.
96
105
.
15.
Warner
,
M. D.
,
Taylor
,
W. R.
, and
Clift
,
S. E.
, 2001, “
Finite Element Biphasic Indentation of Cartilage: A Comparison of Experimental Indenter and Physiological Contact Geometries
,”
Proc. Inst. Mech. Eng.
,
215
, pp.
487
496
.
16.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
, 1998, “
Evaluation of the Finite Element Software ABAQUS for Biomechanical Modelling of Biphasic Tissues
,”
J. Biomech.
,
31
, pp.
165
169
.
17.
Almeida
,
E. S.
, and
Spilker
,
R. L.
, 1997, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I Alternate Formulations
,”
Comput. Methods Biomech. Biomed. Eng.
,
1
, pp.
25
46
.
18.
Spilker
,
R. L.
,
Nickel
,
J. C.
, and
Iwasaki
,
L. R.
, 2009, “
A Biphasic Finite Element Model of In Vitro Plowing Tests of the Temporomandibular Joint Disc
,”
Ann. Biomed. Eng
,
37
, pp.
1152
1164
.
19.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
, 1992, “
A Finite Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular Cartilage
,”
ASME J. Biomech. Eng.
,
114
, pp.
191
201
.
20.
Soslowsky
,
I. J.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 1990, “
Stereophotogrammetric Determination of Joint Anatomy and Contact Areas
,”
Biomechanics of Diarthrodial Joints
, edited by
V. C.
Mow
,
T. A.
Ratcliffe
, and
S. L.
Woo
,
Springer
,
Berlin
, pp.
243
268
.
21.
Donzelli
,
P. S.
, 1995, “
A Mixed-Penalty Contact Finite Element Formulation for Biphasic Soft Tissue
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
You do not currently have access to this content.