The purpose of this study is to evaluate the potential correlation between peak wall stress (PWS) and abdominal aortic aneurysm (AAA) morphology and how it relates to aneurysm rupture potential. Using in-house segmentation and meshing software, six 3-dimensional (3D) AAA models from a single patient followed for 28 months were generated for finite element analysis. For the AAA wall, both isotropic and anisotropic materials were used, while an isotropic material was used for the intraluminal thrombus (ILT). These models were also used to calculate 36 geometric indices characteristic of the aneurysm morphology. Using least squares regression, seven significant geometric features (p < 0.05) were found to characterize the AAA morphology during the surveillance period. By means of nonlinear regression, PWS estimated with the anisotropic material was found to be highly correlated with three of these features: maximum diameter (r = 0.992, p = 0.002), sac volume (r = 0.989, p = 0.003) and diameter to diameter ratio (r = 0.947, p = 0.033). The correlation of wall mechanics with geometry is nonlinear and reveals that PWS does not increase concomitantly with aneurysm diameter. This suggests that a quantitative characterization of AAA morphology may be advantageous in assessing rupture risk.

References

1.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
, 2003,
“Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter,”
J. Vasc. Surg.
,
37
(
4
), pp.
724
732
.
2.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
, 2002,
“In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk,”
J. Vasc. Surg.
,
36
(
3
), pp.
589
597
.
3.
Shum
,
J. D.
,
Martino
,
E. S.
,
Goldhammer
,
A.
,
Goldman
,
D.
,
Acker
,
L.
,
Patel
,
G.
,
Ng
,
J. H.
,
Martufi
,
G.
, and
Finol
,
E. A.
, 2010,
“Semi-Automatic Vessel Wall Detection and Quantification of Wall Thickness in Computed Tomography Images of Human Abdominal Aortic Aneurysms,”
Med. Phys.
,
37
, pp.
638
648
.
4.
Martufi
,
G. D.
,
Martino
,
E. S.
,
Amon
,
C. H.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
, 2009,
“Three-Dimensional Geometric Characterization of Abdominal Aortic Aneurysm: Image-Based Wall Thickness,”
J. Biomech. Eng.
,
131
, pp.
610151
6101511
.
5.
Raghavan
,
M. L.
, and
Vorp
D. A.
, 2000,
“Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of its Applicability,”
J. Biomech.
,
33
, pp.
475
482
.
6.
Rodriguez
,
J. F.
,
Martufi
,
G.
,
Doblare
,
M.
, and
Finol
,
E. A.
, 2009,
“The Effect of Material Model Formulation in the Stress Analysis of Abdominal Aortic Aneurysms.”
Ann. Biomed. Eng.
,
37
, pp.
2218
2221
.
7.
Vande Geest
,
J. P.
,
Wang
,
D. H.
, and
Wisniewski
,
S. R.
, 2006, “
Toward a Noninvasive Method Determination of Patient Specific Wall Strength Distribution in Abdominal Aortic Aneurysms,”
Ann. Biomed. Eng.
,
34
, pp.
1098
1106
.
8.
Shum
,
J.
,
Martufi
,
G. D.
,
Martino
,
E. S.
,
Washington
,
C. B.
,
Grisafi
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
, 2011,
“Quantitative Assessment of Abdominal Aortic Aneurysm Geometry,”
Ann. Biomed. Eng.
,
39
, pp.
277
286
.
9.
Shum
,
J.
,
Xu
,
A.
,
Chatnuntawech
,
I.
, and
Finol
E.A.
, 2011,
“A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models,”
Ann. Biomed. Eng.
,
39
, pp.
249
259
.
10.
Cappeller
,
W.A.
,
Engelmann
,
H.
,
Blechschmidt
,
S.
,
Wild
,
M.
, and
Lauterjung
,
L.
, 1997,
“Possible Objectification of a Critical Maximum Diameter for Elective Surgery in Abdominal Aortic Aneurysms Based on One- and Three-Dimensional Ratios,”
J. Cardiovasc. Surg.
,
38
, pp.
623
628
.
11.
Lederle
,
F. A.
,
Wilson
,
S. E.
,
Johnson
,
G. R.
,
Reinke
,
D. B.
,
Littooy
,
F. N.
,
Acher
,
C. W.
,2002,
“Immediate Repair Compared with Surveillance of Small Abdominal Aortic Aneurysms,”
New Engl. J. Med.
,
346
(
19
), pp.
1437
1444
.
12.
Scotti
,
C. M.
,
Jimenez
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,. 2008,
“Wall Stress and Flow Dynamics in Abdominal Aortic Aneurysms: Finite Element Analysis vs. Fluid-Structure Interaction,”
Comp. Met. Biomech. Biomed. Eng.
,
11
, pp.
301
322
.
13.
Scotti
,
C. M.
,
Shkolnik
,
A. D.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
, 2005,
“Fluid-Structure Interaction in Abdominal Aortic Aneurysms: Effects of Asymmetry and Wall Thickness
,”
Biomed. Eng. Online
4
,
14
.
14.
Venkatasubramaniam
,
A. K.
,
Fagan
,
M. J.
,
Mehta
,
T
,
Mylankal
,
K. J.
,
Ray
,
B.
,
Kuhan
,
G.
et al.
2004,
“A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-Ruptured Abdominal Aortic Aneurysms,”
Eur. J. Vasc. Endovasc. Surg.
,
28
(
2
), pp.
168
176
.
15.
Georgakarakos
,
E
,
Ioannou
,
C. V.
,
Kamarianakis
,
Y.
,
Papaharilaou
,
Y.
,
Kostas
,
T.
,
Manouaski
,
E.
et al.
2010,
“The Role of Geometric Parameters in the Prediction of Abdominal Aortic Aneurysm Wall Stress,”
Eur. J. Vasc. Endovasc. Surg.
,
39
, pp.
42
48
.
16.
Li Z
.
H.
, 2010, “
Computed Wall Stress may Predict Growth of Abdominal Aortic Aneurysm
,”
32nd Annual International IEEE EMBS Conference
, pp.
2626
2629
.
17.
Giannoglou
,
G.
,
Ginnakoulas
,
G.
,
Soulis
,
J.
,
Chatzizisis
,
Y.
,
Perdikides
,
T.
,
Melas
,
N.
et al.
2010,
“Predicting the Risk of Rupture of Abdominal Aortic Aneurysms by Utilizing Various Geometrical Parameters: Revisiting the Diameter Criterion,”
Angiology
57
, pp.
487
494
.
18.
Choi
,
G.
,
Cheng
,
C. P.
,
Wilson
,
N. M.
, and
Taylor
,
C. A.
, 2009,
“Methods for Quantifying Three-Dimensional Deformation of Arteries due to Pulsatile and Nonpulsatile Forces: Implications for the Design of Stents and Stent Grafts,”
Ann. Biomed. Eng.
,
37
, pp.
14
33
.
19.
Pappu
,
S.
,
Dardik
,
A.
,
Tagare
,
H.
, and
Gusberg
,
R. J.
, 2008,
“Beyond Fusiform and Saccular: A Novel Quantitative Tortuosity Index may Help Classify Aneurysm Shape and Predict Aneurysm Rupture Potential,”
Ann. Vasc. Surg.
,
22
, pp
88
97
.
20.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2006,
“A Planar Biaxial Constitutive Relation for the Luminal Layer of Intra-Luminal Thrombus in Abdominal Aortic Aneurysms,”
J. Biomech.
,
39
, pp.
2347
2354
.
21.
Nussbaumer
,
K.
, 2004, “
Aneurysm Dilation Ratio (ADR): A new Technique in the Evaluation of Abdominal Aortic Aneurysms
” [poster], Society of Diagnostic Medical Sonography Annual Conference, New Orleans, LA.
22.
Finol
,
E. A.
, and
Amon
,
C. H.
2002,
“Flow-Induced Wall Shear Stress in Abdominal Aortic Aneurysms: Part I-Steady Flow Hemodynamics,”
Comp. Met. Biomech. Biomed. Eng.
5
, pp.
309
318
.
You do not currently have access to this content.