The current study describes the development of a small animal, closed-joint model of traumatic anterior cruciate ligament (ACL) and meniscal rupture. This model can be used in future studies to investigate the roles of these acute damages on the long-term health of an injured knee joint. Forty-two Flemish Giant rabbits received an insult to the left tibiofemoral joint ex vivo in order to document optimal energy and joint orientation needed to generate ACL and meniscal rupture, without gross fracture of bone. Impact energies ranged from 10 J to 22 J, and joint flexion angle ranged from 60 deg to 90 deg. Three in vivo animals were impacted at 13 J with the knee flexed at 90 deg, as this was determined to be the optimal load and joint orientation for ACL and meniscal ruptures, and sacrificed at 12 weeks. Impact data from the ex vivo group revealed that 13 J of dropped-mass energy, generating approximately 1100 N of load on the knee, would cause ACL and meniscal ruptures, without gross bone fracture. Acute damage to the lateral and medial menisci was documented in numerous ex vivo specimens, with isolated lateral meniscal tears being more frequent than isolated medial tears in other cases. The in vivo animals showed no signs of ill health or other physical complications. At 12 week post-trauma these animals displayed marked degeneration of the traumatized joint including synovitis, cartilage erosion, and the formation of peripheral osteophytes. Histological microcracks at the calcified cartilage-subchondral bone interface were also evident in histological sections of these animals. A closed-joint model of traumatic ACL and meniscal rupture was produced, without gross bone fracture, and a pilot, in vivo study showed progressive joint degeneration without any other noticeable physical impairments of the animals over 12 weeks. This closed-joint, traumatic injury model may be useful in future experimental studies of joint disease and various intervention strategies.

1.
Lane
,
N.
, 1996, “
Physical Activity at Leisure and Risk of Osteoarthritis
,”
Ann. Rheum. Dis.
0003-4967,
55
, pp.
682
684
.
2.
Felson
,
D.
, 2004, “
An Update on the Pathogenesis and Epidemiology of Osteoarthritis
,”
Radiol. Clin. North Am.
0033-8389,
42
, pp.
1
9
.
3.
Griffin
,
L.
,
Agel
,
J.
, and
Albohm
,
M.
, 2000, “
Non-Contact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies
,”
J. Am. Acad. Orthop. Surg.
1067-151X,
8
, pp.
141
150
.
4.
Boden
,
B.
,
Dean
,
G.
,
Feagin
,
J.
, and
Garrett
,
W.
, 2000, “
Mechanisms of Anterior Cruciate Ligament Injury
,”
Orthopedics
0147-7447,
23
, pp.
573
578
.
5.
Hewett
,
T.
,
Stroupe
,
A.
,
Nance
,
T.
, and
Noyes
,
F.
, 1996, “
Plyometric Training in Female Athletes: Decreased Impact Forces and Increased Hamstrings Torques
,”
Am. J. Sports Med.
0363-5465,
24
(
6
), pp.
765
773
.
6.
Giffin
,
J. R.
,
Vogtin
,
T. M.
,
Zantop
,
T.
,
Woo
,
S. L.-Y.
, and
Harner
,
C. D.
, 2004, “
Effects of Increasing Tibial Slope on the Biomechanics of the Knee
,”
Am. J. Sports Med.
0363-5465,
32
, pp.
376
382
.
7.
Torzilli
,
P.
,
Deng
,
X.
, and
Warren
,
R.
, 1994, “
The Effect of Joint-Compressive Load and Quadriceps Muscle Force on Knee Motion in the Intact and Anterior Cruciate Ligament-Sectioned Knee
,”
Am. J. Sports Med.
0363-5465,
22
, pp.
105
112
.
8.
Butler
,
D.
, 1989, “
Anterior Cruciate Ligament: Its Normal Response and Replacement
,”
J. Orthop. Res.
0736-0266,
7
(
6
), pp.
910
921
.
9.
Meyer
,
E.
,
Baumer
,
T.
,
Slade
,
J.
,
Smith
,
W.
, and
Haut
,
R.
, 2008, “
Tibiofemoral Contact Pressures and Osteochondral Microtrauma During ACL Rupture Due to Excessive Compressive Loading and Internal Torque of the Human Knee
,”
Am. J. Sports Med.
0363-5465,
36
, pp.
1966
1977
.
10.
Yeow
,
C.
,
Cheong
,
C.
,
Ng
,
K.
,
Lee
,
P.
, and
Goh
,
J.
, 2008, “
Anterior Cruciate Ligament Failure and Cartilage Damage During Knee Joint Compression
,”
Am. J. Sports Med.
0363-5465,
36
, pp.
934
942
.
11.
Atkinson
,
P.
,
Cooper
,
T.
,
Anseth
,
S.
,
Walter
,
N.
,
Kargus
,
R.
, and
Haut
,
R.
, 2008, “
Association of Knee Bone Bruise Frequency With Time Post-Injury and Type of Soft Tissue Injury
,”
Orthopedics
0147-7447,
31
, p.
440
.
12.
Rangger
,
C.
,
Kathrein
,
A.
,
Freund
,
M.
,
Klestil
,
T.
, and
Kreczy
,
A.
, 1998, “
Bone Bruise of the Knee: Histology and Cryosections in 5 Cases
,”
Acta Orthop. Scand.
0001-6470,
69
, pp.
291
294
.
13.
Frobell
,
R.
,
Roos
,
H.
,
Roos
,
E.
,
Hellio Le Graverand
,
M.
,
Buck
,
R.
,
Tamez-Pena
,
J.
,
Totterman
,
S.
,
Boegard
,
T.
, and
Lohmander
,
L.
, 2008, “
The Acutely ACL Injuried Knee Assessed by MRI: Are Large Volume Traumatic Bone Marrow Lesions a Sign of Severe Compression Injury?
,”
Osteoarthritis Cartilage
1063-4584,
16
(
7
), pp.
829
836
.
14.
Fang
,
C.
,
Johnson
,
D.
,
Leslie
,
M. P.
,
Calson
,
C.
,
Robbins
,
M.
, and
Cesare
,
P.
, 2001, “
Tissue Distribution and Measurement of Cartilage Oligomeric Matrix Protein in Patients With Magnetic Resonance Imaging-Detected Bone Bruises After Acute Anterior Cruciate Ligament Tears
,”
J. Orthop. Res.
0736-0266,
19
(
4
), pp.
634
641
.
15.
Batiste
,
D.
,
Kirkley
,
A.
,
Laverty
,
S.
,
Thain
,
L.
,
Spouge
,
A.
, and
Holdsworth
,
D.
, 2004, “
Ex Vivo Characterization of Articular Cartilage and Bone Lesions in a Rabbit ACL Transection Model of Osteoarthritis Using MRI and Micro-CT
,”
Osteoarthritis Cartilage
1063-4584,
12
, pp.
986
996
.
16.
Vignon
,
E.
,
Bejui
,
J.
,
Mathiew
,
P.
,
Hartmann
,
J.
,
Ville
,
G.
,
Evreux
,
J.
, and
Descotes
,
J.
, 1987, “
Histological Cartilage Changes in a Rabbit Model of Osteoarthritis
,”
J. Rheum.
,
14
, pp.
104
106
.
17.
Crum
,
J.
,
LaPrade
,
R.
, and
Wentorf
,
F.
, 2003, “
The Anatomy of the Posterolateral Aspect of the Rabbit Knee
,”
J. Orthop. Res.
0736-0266,
21
(
4
), pp.
723
729
.
18.
Isaac
,
D.
,
Meyer
,
E.
, and
Haut
,
R.
, 2008, “
Chondrocyte Damage and Contact Pressures Following Impact on the Rabbit Tibiofemoral Joint
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
4
), p.
041018
.
19.
Killian
,
M.
,
Isaac
,
D.
,
Haut
,
R.
,
Dejardin
,
L.
,
Leetun
,
D.
, and
Haut Donahue
,
T.
, “
Traumatic Anterior Cruciate Ligament Tear and Its Implications on Meniscal Degradation: A Preliminary Novel Lapine Osteoarthritis Model
,”
J. Surg. Res.
0022-4804 in press.
20.
Papaioannou
,
N.
,
Krallis
,
N.
,
Triantafillopoulos
,
I.
,
Khaldi
,
L.
,
Dontas
,
I.
, and
Lyritis
,
G.
, 2004, “
Optimal Timing of Research After Anterior Cruciate Ligament Resection in Rabbits
,”
Contemporary Topics in Laboratory Animal Science
,
43
1060-0558, pp.
22
27
.
You do not currently have access to this content.