Periacetabular osteolysis is a potentially difficult surgical challenge, which can often drive the choice of reconstruction methods used in revision hip replacement. For smaller defects, impaction of bone grafts may be sufficient, but larger defects can require filler materials that provide structural support in addition to filling a void. This study utilized finite element analysis (FEA) to examine the state of stress in periprosthetic pelvic bone when subjected to a stair-climbing load and in the presence of two simulated defects, to show the effect of implanting a defect repair implant fabricated from Trabecular Metal. Even a small medial bone defect showed a local stress elevation of 4× compared with that seen with an acetabular implant supported by intact periacetabular bone. Local bone stress was much greater (8× the baseline level) for a defect case in which the loss of bone superior to the acetabular implant permitted significant migration. FEA results showed that a repair of the small defect with a Trabecular Metal restrictor lowered periprosthetic bone stress to a level comparable to that in the case of a primary implant. For the larger defect case, the use of a Trabecular Metal augment provides structural stabilization and helps to restore the THR head center. However, stress in the adjacent periprosthetic bone is lower than that observed in the defect-free acetabulum. In the augment case, the load path between the femoral head and the pelvis now passes through the augment as the superior rim of the acetabulum has been replaced. Contact-induced stress in the augment is similar in magnitude to that seen in the superior rim of the baseline case, although the stress pattern in the augment is noticeably different from that in intact bone.

1.
Levenston
,
M. E.
,
Beaupré
,
G. S.
,
Carter
,
D. R.
, and
Schurman
,
D. J.
, 1992, “
Skeletogenesis and Bone Remodeling Theory Applied to the Peri-Acetabular Region
,”
Proceedings of the 38th Annual Meeting of the Orthopaedic Research Society
, Washington DC, p.
536
.
2.
Wright
,
J. M.
,
Pellici
,
P. M.
,
Salvati
,
E. A.
,
Ghelman
,
B.
,
Roberts
,
M. M.
, and
Koh
,
J. L.
, 2001, “
Bone Density Adjacent to Press-Fit Acetabular Components: A Prospective Analysis With Quantitative Computed Tomography
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
83
, pp.
529
536
.
3.
Kitamura
,
N.
,
Naudie
,
D. D. R.
,
Leung
,
S. B.
,
Hopper
,
R. H.
, Jr.
, and
Engh
,
C. A.
, Sr.
, 2005, “
Diagnostic Features of Pelvic Osteolysis on Computed Tomography: The Importance of Communication Pathways
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
87
, pp.
1542
1550
.
4.
Dürr
,
H. R.
,
Martin
,
H.
,
Pellengahr
,
C.
,
Schlemmer
,
M.
,
Maier
,
M.
, and
Jansson
,
V.
, 2004, “
The Cause of Subchondral Bone Cysts in Osteoarthrosis: A Finite Element Study
,”
Acta Orthop. Scand.
0001-6470,
75
(
5
), pp.
554
558
.
5.
Chiang
,
P. P.
,
Burke
,
D. W.
,
Freiberg
,
A. A.
, and
Rubash
,
H. E.
, 2003, “
Osteolysis of the Pelvis
,”
Clin. Orthop. Relat. Res.
0009-921X,
417
, pp.
164
174
.
6.
Claus
,
A. M.
,
Walde
,
T. A.
,
Leung
,
S. B.
,
Wolf
,
R. L.
, and
Engh
,
C. A.
, Sr.
, 2003, “
Management of Patients With Acetabular Socket Wear and Pelvic Osteolysis
,”
J. Arthroplasty
0883-5403,
18
(
3
), pp.
112
117
.
7.
Looney
,
R. J.
,
Boyd
,
A.
,
Totterman
,
S.
,
Seo
,
G. -S.
,
Tamez-Pena
,
J.
,
Campbell
,
D.
,
Novotny
,
L.
,
Olcott
,
C.
,
Martell
,
J.
,
Hayes
,
F. A.
,
O’Keefe
,
R. J.
, and
Schwarz
,
E. M.
, 2002, “
Volumetric Computed Tomography as a Measure of Periprosthetic Acetabular Osteolysis and Its Correlation With Wear
,”
Arthritis Res. Ther.
1478-6354,
4
, pp.
59
63
.
8.
Gross
,
A. E.
, and
Goodman
,
S.
, 2004, “
The Current Role of Structural Grafts and Cages in Revision Arthroplasty of the Hip
,”
Clin. Orthop. Relat. Res.
0009-921X,
429
, pp.
193
200
.
9.
Nehme
,
A.
,
Lewallen
,
D. G.
, and
Hanssen
,
A. D.
, 2004, “
Modular Porous Metal Augments for Treatment of Severe Acetabular Bone Loss During Revisions Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
429
, pp.
201
208
.
10.
Li
,
Z.
,
Butala
,
N. B.
,
Etheridge
,
B. S.
,
Siegel
,
H. J.
,
Lemons
,
J. E.
, and
Eberhardt
,
A. W.
, 2007, “
A Biomechanical Study of Periacetabular Defects and Cement Filling
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
129
136
.
11.
Finkemeier
,
C. G.
, 2002, “
Bone-Grafting and Bone-Graft Substitutes
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
84
, pp.
454
464
.
12.
Paprosky
,
W. G.
, and
Burnett
,
S. J.
, 2002, “
Assessment and Classification of Bone Stock Deficiency in Revision Total Hip Arthroplasty
,”
Am. J. Orthop.
1078-4519,
26
, pp.
459
464
.
13.
Paprosky
,
W. G.
and
Sekundiak
,
T. D.
, 1999, “
Instructional Course Lectures, The American Academy of Orthopaedic Surgeons—Total Acetabular Allografts
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
81
, pp.
280
291
.
14.
Stiehl
,
J. B.
, 2004, “
Revascularization of a Total Bulk Acetabular Allograft at 14 Years
,”
J. Arthroplasty
0883-5403,
19
, pp.
508
512
.
15.
Bobyn
,
J. D.
,
Poggie
,
R. A.
,
Krygier
,
J. J.
,
Lewallen
,
D. G.
,
Hanssen
,
A. D.
,
Lewis
,
R. J.
,
Unger
,
A. S.
,
O'Keefe
,
T. J.
,
Christie
,
M. J.
,
Nasser
,
S.
,
Wood
,
J. E.
,
Stulberg
,
S. D.
, and
Tanzer
,
M.
, 2004, “
Clinical Validation of a Structural Porous Tantalum Biomaterial for Adult Reconstruction
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
86
, pp.
123
129
.
16.
Levine
,
B.
,
Della Valle
,
C. J.
, and
Jacobs
,
J. J.
, 2006, “
Applications of Porous Tantalum in Total Hip Arthroplasty
,”
J. Am. Acad. Orthop. Surg.
1067-151X,
4
, pp.
646
655
.
17.
Siggelkow
,
E.
, 2000, “
Construction and Validation of a Finite Element Model of a Human Pelvis to Determine the Behavior of Deformation
,” Diplome thesis, University of Rostock, Germany.
18.
Dalstra
,
M.
,
Huiskes
,
R.
, and
van Erning
,
L.
, 1995, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
272
278
.
19.
Dalstra
,
M.
, and
Huiskes
,
R.
, 1995, “
Load Transfer Across the Pelvic Bone
,”
J. Biomech.
0021-9290,
28
, pp.
715
724
.
20.
Schüller
,
H. M.
,
Dalstra
,
M.
,
Huiskes
,
R.
, and
Marti
,
R. K.
, 1993, “
Total Hip Reconstruction in Acetabular Dysplasia
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
75-B
, pp.
468
473
.
21.
Majumder
,
S.
,
Roychowdhury
,
A.
, and
Pal
,
S.
, 2004, “
Variations of Stress in Pelvic Bone During Normal Walking, Considering All Active Muscles
,”
Trends in Biomaterials and Artificial Organs
,
17
, pp.
48
53
.
22.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
, 2005, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
364
373
.
23.
Sutherland
,
A. G.
,
D’Arcy
,
S.
,
Smart
,
D.
, and
Ashcroft
,
G. P.
, 2000, “
Removal of the Subchondral Plate in Acetabular Preparation
,”
Int. Orthop.
0341-2695,
24
, pp.
19
22
.
24.
Zardiackas
,
L. D.
,
Parsell
,
D. E.
,
Dillon
,
L. D.
,
Mitchell
,
D. W.
,
Nunnery
,
L. A.
, and
Poggie
,
R.
, 2001, “
Structure, Metallurgy and Mechanical Properties of a Porous Tantalum Foam
,”
J. Biomed. Mater. Res.
0021-9304,
58
, pp.
180
187
.
25.
Liu
,
Y. K.
,
Park
,
J. B.
,
Njus
,
G. O.
, and
Stienstra
,
D.
, 1987, “
Bone-Particle-Impregnated Bone Cement: An In-Vitro Study
,”
J. Biomed. Mater. Res.
0021-9304,
21
, pp.
247
261
.
26.
Kurtz
,
S. M.
,
Villarraga
,
M. I.
,
Herr
,
M. P.
,
Bergström
,
J. S.
,
Rimnac
,
C. M.
, and
Eddin
,
A. A.
, 2002, “
Thermomechanical Behavior of Virgin and Highly Crosslinked Ultra-High Molecular Weight Polyethylene Used in Total Joint Replacements
,”
Biomaterials
0142-9612,
23
, pp.
3681
3697
.
27.
Fitzpatrick
,
D.
,
Ahn
,
P.
,
Brown
,
T.
, and
Poggie
,
R.
, 1997, “
Friction Coefficients of Porous Tantalum and Cancellous and Cortical Bone
,”
Proceedings of the 21st Annual Meeting of the American Society of Biomechanics
, Clemson, SC, Sept.
28.
Heller
,
M. O.
,
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Dürselen
,
L.
,
Pohl
,
M.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
, 2001, “
Musculo-Skeletal Loading Conditions at the Hip During Walking and Stair Climbing
,”
J. Biomech.
0021-9290,
34
, pp.
883
893
.
29.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G.
, 2001, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
0021-9290,
34
, pp.
859
871
.
30.
Speirs
,
A. D.
,
Heller
,
M.
,
Taylor
,
W.
,
Duda
,
G.
, and
Perka
,
C.
, 2007, “
Influence of Changes in Stem Positioning on Femoral Loading After THR Using a Short-Stemmed Hip Implant
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
, pp.
431
439
.
31.
Taylor
,
W. R.
,
Ehrig
,
R.
,
Heller
,
M.
,
Schell
,
H.
,
Seebeck
,
P.
, and
Duda
,
G.
, 2006, “
Tibio-Femoral Joint Contact Forces in Sheep
,”
J. Biomech.
0021-9290,
39
, pp.
791
798
.
32.
Sporer
,
S. M.
, and
Paprosky
,
W. G.
, 2006, “
The Use of a Trabecular Metal Acetabular Component and Trabecular Metal Augment for Severe Acetabular Defects
,”
J. Arthroplasty
0883-5403,
21
(
6
), pp.
83
86
.
33.
Bobyn
,
J. D.
,
Stackpool
,
G. J.
,
Hacking
,
S. A.
,
Tanzer
,
M.
, and
Krygier
,
J. J.
, 1999, “
Characteristics of Bone Ingrowth and Interface Mechanics of a New Porous Tantalum Biomaterial
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
81
, pp.
907
914
.
34.
Yoshida
,
H.
,
Faust
,
A.
,
Wilckens
,
J.
,
Kitagawa
,
M.
,
Fetto
,
J.
, and
Chao
,
E.
, 2006, “
Three-Dimensional Dynamic Hip Contact Area and Pressure Distribution During Activities of Daily Living
,”
J. Biomech.
0021-9290,
39
, pp.
1996
2004
.
35.
Zimmer, Inc.
, “
Trabecular Metal™ Acetabular Restrictor and Augment—Surgical Technique
,” Paper No. 97-7255-138-00.
36.
Heiner
,
A. D.
,
Callaghan
,
J.
, and
Brown
,
T.
, 2005, “
A Laboratory Simulation for Morselized Bone Graft Fusion: Apparent Modulus Under Operatively Based Femoral Impaction Kinetics
,”
J. Biomech.
0021-9290,
38
, pp.
811
818
.
You do not currently have access to this content.