Computationally expensive finite element (FE) methods are generally used for indirect evaluation of tissue mechanical properties of trabecular specimens, which is vital for fracture risk prediction in the elderly. This work presents the application of reduced-basis (RB) methods for rapid evaluation of simulation results. Three cylindrical transiliac crest specimens (diameter: 7.5 mm, length: 10–12 mm) were obtained from healthy subjects (20 year-old, 22 year-old, and 24 year-old females) and scanned using microcomputed tomography imaging. Cubic samples of dimensions 5×5×5mm3 were extracted from the core of the cylindrical specimens for FE analysis. Subsequently, a FE solution library (test space) was constructed for each of the specimens by varying the material property parameters: tissue elastic modulus and Poisson’s ratio, to develop RB algorithms. The computational speed gain obtained by the RB methods and their accuracy relative to the FE analysis were evaluated. Speed gains greater than 4000 times, were obtained for all three specimens for a loss in accuracy of less than 1% in the maxima of von-Mises stress with respect to the FE-based value. The computational time decreased from more than 6 h to less than 18 s. RB algorithms can be successfully utilized for real-time reliable evaluation of trabecular bone elastic properties.

1.
Harrison
,
N. M.
,
McDonnell
,
P. F.
,
O’Mahoney
,
D. C.
,
Kennedy
,
O. D.
,
O’Brien
,
F. J.
, and
McHugh
,
P. E.
, 2008, “
Heterogeneous Linear Elastic Trabecular Bone Modelling Using Micro-CT Attenuation Data and Experimentally Measured Heterogeneous Tissue Properties
,”
J. Biomech.
0021-9290,
41
(
11
), pp.
2589
2596
.
2.
van Lenthe
,
G. H.
,
Stauber
,
M.
, and
Müller
,
R.
, 2006, “
Specimen-Specific Beam Models for Fast and Accurate Prediction Of Human Trabecular Bone Mechanical Properties
,”
Bone (N.Y.)
8756-3282,
39
(
6
), pp.
1182
1189
.
3.
Verhulp
,
E.
,
van Rietbergen
,
B.
,
Müller
,
R.
, and
Huiskes
,
R.
, 2008, “
Indirect Determination of Trabecular Bone Effective Tissue Failure Properties Using Micro-Finite Element Simulations
,”
J. Biomech.
0021-9290,
41
(
7
), pp.
1479
1485
.
4.
Gong
,
H.
,
Zhang
,
M.
,
Qin
,
L.
, and
Hou
,
Y.
, 2007, “
Regional Variations in the Apparent and Tissue-Level Mechanical Parameters of Vertebral Trabecular Bone With Aging Using Micro-Finite Element Analysis
,”
Ann. Biomed. Eng.
0090-6964,
35
(
9
), pp.
1622
1631
.
5.
Nguyen
,
N. C.
, 2005, “
Reduced-Basis Approximation and A Posteriori Error Bounds for Non-Affine and Nonlinear Partial Differential Equations: Application to Inverse Analysis
,” Ph.D. thesis, Singapore-MIT Alliance, National University of Singapore, Singapore.
6.
Veroy
,
K.
, and
Patera
,
A. T.
, 2005, “
Certified Real-Time Solution of the Parametrized Steady Incompressible Navier-Stokes Equations: Rigorous Reduced-Basis A Posteriori Error Bounds
,”
Int. J. Numer. Methods Fluids
0271-2091,
47
(
8–9
), pp.
773
788
.
7.
Lee
,
T.
,
Lakes
,
R. S.
, and
Lal
,
A.
, 2002, “
Investigation of Bovine Bone by Resonant Ultrasound Spectroscopy and Transmission Ultrasound
,”
Biomech. Model. Mechanobiol.
1617-7959,
1
(
2
), pp.
165
175
.
8.
Chevalier
,
Y.
,
Pahr
,
D.
,
Allmer
,
H.
,
Charlebois
,
M.
, and
Zysset
,
P.
, 2007, “
Validation of a Voxel-Based FE Method for Prediction of the Uniaxial Apparent Modulus of Human Trabecular Bone Using Macroscopic Mechanical Tests and Nanoindentation
,”
J. Biomech.
0021-9290,
40
(
15
), pp.
3333
3340
.
9.
Odgaard
,
A.
, 1997, “
Three-Dimensional Methods for Quantification of Cancellous Bone Architecture
,”
Bone (N.Y.)
8756-3282,
20
(
4
), pp.
315
328
.
10.
Liu
,
X. S.
,
Sajda
,
P.
,
Saha
,
P. K.
,
Wehrli
,
F. W.
,
Bevill
,
G.
,
Keaveny
,
T. M.
, and
Guo
,
X. E.
, 2008, “
Complete Volumetric Decomposition of Individual Trabecular Plates and Rods and Its Morphological Correlations With Anisotropic Elastic Moduli in Human Trabecular Bone
,”
J. Bone Miner. Res.
0884-0431,
23
(
2
), pp.
223
235
.
11.
Makiyama
,
A. M.
,
Vajjhala
,
S.
, and
Gibson
,
L. J.
, 2002, “
Analysis of Crack Growth in a 3D Voronoi Structure: A Model for Fatigue in Low Density Trabecular Bone
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
5
), pp.
512
520
.
12.
Zaw
,
K.
,
Liu
,
G. R.
,
Deng
,
B.
, and
Tan
,
K. B. C.
, 2009, “
Rapid Identification of Elastic Modulus of the Interface Tissue on Dental Implants Surfaces Using Reduced-Basis Method and a Neural Network
,”
J. Biomech.
0021-9290,
42
(
5
), pp.
634
641
.
13.
Grepl
,
M. A.
,
Maday
,
Y.
,
Nguyen
,
N. C.
, and
Patera
,
A. T.
, 2007, “
Efficient Reduced-Basis Treatment of Nonaffine and Nonlinear Partial Differential Equations
,”
Math. Modell. Numer. Anal.
0764-583X,
41
(
3
), pp.
575
605
.
14.
Nguyen
,
N. C.
,
Veroy
,
K.
, and
Patera
,
A. T.
, 2005, “
Certified Real-Time Solution of Parametrized Partial Differential Equations
,”
Handbook of Materials Modeling
,
S.
Yip
, ed.,
Springer
,
New York
, pp.
1523
1558
.
15.
Rozza
,
G.
,
Huynh
,
D. B. P.
, and
Patera
,
A. T.
, 2008, “
Reduced Basis Approximation and A Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations Application to Transport and Continuum Mechanics
,”
Arch. Comput. Methods Eng.
1134-3060,
15
(
3
), pp.
229
75
.
16.
Keaveny
,
T. M.
,
Guo
,
X. E.
,
Wachtel
,
E. F.
,
McMahon
,
T. A.
, and
Hayes
,
W. C.
, 1994, “
Trabecular Bone Exhibits Fully Linear Elastic Behavior and Yields at Low Strains
,”
J. Biomech.
0021-9290,
27
(
9
), pp.
1127
1136
.
17.
Lee
,
T.
,
Pereira
,
B. P.
,
Chung
,
Y. S.
,
Oh
,
H. J.
,
Choi
,
J. B.
,
Lim
,
D.
, and
Shin
,
J. H.
, 2009, “
Novel Approach of Predicting Fracture Load in the Human Proximal Femur Using Non-Invasive QCT Imaging Technique
,”
Ann. Biomed. Eng.
0090-6964,
37
(
5
), pp.
966
975
.
18.
Milani
,
R.
,
Quarteroni
,
A.
, and
Rozza
,
G.
, 2008, “
Reduced Basis Method for Linear Elasticity Problems With Many Parameters
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
197
(
51–52
), pp.
4812
4829
.
19.
Lee
,
T.
, 2007, “
Predicting Failure Load of the Femur With Simulated Osteolytic Defects Using Noninvasive Imaging Technique in a Simplified Load Case
,”
Ann. Biomed. Eng.
0090-6964,
35
(
4
), pp.
642
650
.
20.
Nagaraja
,
S.
,
Couse
,
T. L.
, and
Guldberg
,
R. E.
, 2005, “
Trabecular Bone Microdamage and Microstructural Stresses Under Uniaxial Compression
,”
J. Biomech.
0021-9290,
38
(
4
), pp.
707
716
.
21.
Rozza
,
G.
, 2005, “
Shape Design by Optimal Flow Control and Reduced Basis Techniques: Applications to Bypass Configurations in Haemodynamics
,” Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
22.
Ulrich
,
D.
,
Hildebrand
,
T.
,
Van Rietbergen
,
B.
,
Müller
,
R.
, and
Rüegsegger
,
P.
, 1997, “
The Quality of Trabecular Bone Evaluated With Micro-Computed Tomography, FEA and Mechanical Testing
,”
Stud. Health Technol. Inform.
0926-9630,
40
, pp.
97
112
.
23.
Van Rietbergen
,
B.
,
Huiskes
,
R.
,
Eckstein
,
F.
, and
Rüegsegger
,
P.
, 2003, “
Trabecular Bone Tissue Strains in the Healthy and Osteoporotic Human Femur
,”
J. Bone Miner. Res.
0884-0431,
18
(
10
), pp.
1781
1788
.
24.
Pahr
,
D. H.
, and
Zysset
,
P. K.
, 2009, “
A Comparison of Enhanced Continuum FE With Micro FE Models of Human Vertebral Bodies
,”
J. Biomech.
0021-9290,
42
(
4
), pp.
455
462
.
25.
Dendorfer
,
S.
,
Maier
,
H. J.
,
Taylor
,
D.
, and
Hammer
,
J.
, 2008, “
Anisotropy of the Fatigue Behavior of Cancellous Bone
,”
J. Biomech.
0021-9290,
41
(
3
), pp.
636
641
.
26.
Judex
,
S.
,
Boyd
,
S.
,
Qin
,
Y. X.
,
Turner
,
S.
,
Ye
,
K.
,
Müller
,
R.
, and
Rubin
,
C.
, 2003, “
Adaptations of Trabecular Bone to Low Magnitude Vibrations Result in More Uniform Stress and Strain Under Load
,”
Ann. Biomed. Eng.
0090-6964,
31
(
1
), pp.
12
20
.
27.
Kosmopoulos
,
V.
,
Schizas
,
C.
, and
Keller
,
T. S.
, 2008, “
Modeling the Onset and Propagation of Trabecular Bone Microdamage During Low-Cycle Fatigue
,”
J. Biomech.
0021-9290,
41
(
3
), pp.
515
522
.
You do not currently have access to this content.