The Arrhenius and thermal isoeffective dose (TID) models are the two most commonly used models for predicting hyperthermic injury. The TID model is essentially derived from the Arrhenius model, but due to a variety of assumptions and simplifications now leads to different predictions, particularly at temperatures higher than 50°C. In the present study, the two models are compared and their appropriateness tested for predicting hyperthermic injury in both the traditional hyperthermia (usually, 4350°C) and thermal surgery (or thermal therapy/thermal ablation, usually, >50°C) regime. The kinetic parameters of thermal injury in both models were obtained from the literature (or literature data), tabulated, and analyzed for various prostate and kidney systems. It was found that the kinetic parameters vary widely, and were particularly dependent on the cell or tissue type, injury assay used, and the time when the injury assessment was performed. In order to compare the capability of the two models for thermal injury prediction, thermal thresholds for complete killing (i.e., 99% cell or tissue injury) were predicted using the models in two important urologic systems, viz., the benign prostatic hyperplasia tissue and the normal porcine kidney tissue. The predictions of the two models matched well at temperatures below 50°C. At higher temperatures, however, the thermal thresholds predicted using the TID model with a constant R value of 0.5, the value commonly used in the traditional hyperthermia literature, are much lower than those predicted using the Arrhenius model. This suggests that traditional use of the TID model (i.e., R=0.5) is inappropriate for predicting hyperthermic injury in the thermal surgery regime (>50°C). Finally, the time-temperature relationships for complete killing (i.e., 99% injury) were calculated and analyzed using the Arrhenius model for the various prostate and kidney systems.

1.
Hall
,
E.
, 1994, “
Hyperthermia
,”
Radiobiology for Radiologists
,
JB Lippincott
,
Philidelphia, PA
.
2.
Streffer
,
C.
, 1990, “
Biological Basis of Thermotherapy (With Special Reference to Oncology)
,”
Biological Basis of Oncologic Thermotherapy
,
M.
Gautherie
, ed.,
Springer-Verlag
,
Berlin, Heidelberg
, pp.
1
71
.
3.
Roti Roti
,
J. L.
, 2008, “
Cellular Responses to Hyperthermia (40–46°C): Cell Killing and Molecular Events
,”
Int. J. Hyperthermia
0265-6736,
24
(
1
), pp.
3
15
.
4.
Diller
,
K. R.
, and
Ryan
,
T. P.
, 1998, “
Heat Transfer in Living Systems: Current Opportunities
,”
ASME J. Heat Transfer
0022-1481,
120
(
4
), pp.
810
829
.
5.
He
,
X.
, and
Bischof
,
J. C.
, 2003, “
Quantification of Temperature and Injury Response in Thermal Therapy and Cryosurgery
,”
Crit. Rev. Biomed. Eng.
0278-940X,
31
(
5–6
), pp.
355
422
.
6.
Diederich
,
C. J.
, 2005, “
Thermal Ablation and High-Temperature Thermal Therapy: Overview of Technology and Clinical Implementation
,”
Int. J. Hyperthermia
0265-6736,
21
(
8
), pp.
745
753
.
7.
Livraghi
,
T.
,
Goldberg
,
S. N.
,
Monti
,
F.
,
Bizzini
,
A.
,
Lazzaroni
,
S.
,
Meloni
,
F.
,
Pellicano
,
S.
,
Solbiati
,
L.
, and
Gazelle
,
G. S.
, 1997, “
Saline-Enhanced Radio-Frequency Tissue Ablation in the Treatment of Liver Metastases
,”
Radiology
0033-8419,
202
(
1
), pp.
205
210
.
8.
Goldberg
,
S. N.
,
Gazelle
,
G. S.
,
Halpern
,
E. F.
,
Rittman
,
W. J.
,
Mueller
,
P. R.
, and
Rosenthal
,
D. I.
, 1996, “
Radiofrequency Tissue Ablation: Importance of Local Temperature Along the Electrode Tip Exposure in Determining Lesion Shape and Size
,”
Acad. Radiol.
1076-6332,
3
(
3
), pp.
212
218
.
9.
Robinson
,
D. S.
,
Parel
,
J. M.
,
Denham
,
D. B.
,
Gonzalez-Cirre
,
X.
,
Manns
,
F.
,
Milne
,
P. J.
,
Schachner
,
R. D.
,
Herron
,
A. J.
,
Comander
,
J.
, and
Hauptmann
,
G.
, 1998, “
Interstitial Laser Hyperthermia Model Development for Minimally Invasive Therapy of Breast Carcinoma
,”
J. Am. Coll. Surg.
1072-7515,
186
(
3
), pp.
284
292
.
10.
Goldfarb
,
H. A.
, 1995, “
Bipolar Laparoscopic Needles for Myoma Coagulation
,”
J. Am. Assoc. Gynecol. Laparosc.
,
2
(
2
), pp.
175
179
. 1074-3804
11.
de la Rosette
,
J. J.
,
D’Ancona
,
F. C.
, and
Debruyne
,
F. M.
, 1997, “
Current Status of Thermotherapy of the Prostate
,”
J. Urol. (Baltimore)
0022-5347,
157
(
2
), pp.
430
438
.
12.
Henriques
,
F. C.
, Jr.
, 1947, “
Studies of Thermal Injury: V. The Predictability and the Significance of Thermally Induced Rate Process Leading to Irreversible Epidermal Injury
,”
Arch. Pathol.
0363-0153,
43
, pp.
489
502
.
13.
Lawrence
,
J. C.
, and
Bull
,
J. P.
, 1976, “
Thermal Conditions Which Cause Skin Burns
,”
Eng. Med.
0046-2039,
5
, pp.
61
63
.
14.
Diller
,
K. R.
, 1992, “
Modeling of Bioheat Transfer Processes at High and Low Temperatures
,”
Advances in Heat Transfer
,
Y. I.
Cho
, ed.,
Academic
,
New York
.
15.
Pearce
,
J.
, and
Thomsen
,
S.
, 1995, “
Rate Process Analysis of Thermal Damage
,”
Optical Thermal Response of Laser-Irradiated Tissue
,
A. J.
van Germert
, and
M. J. C.
Welch
, eds.,
Plenum
,
New York
.
16.
Cravalho
,
E. G.
,
Toner
,
M.
,
Gaylor
,
D. C.
, and
Lee
,
R. C.
, 1992, “
Response of Cells to Supraphysiological Temperatures: Experimental Measurements and Kinetic Models
,”
Electrical Trauma: The Pathophysiology, Manifestations and Clinical Management
,
R. C.
Cravalho
,
E. G.
Burke
, and
J. F.
Lee
, eds.,
Cambridge University
Press
,
Cambridge, UK
.
17.
Dewey
,
W. C.
, 1994, “
Arrhenius Relationships From the Molecule and Cell to the Clinic
,”
Int. J. Hyperthermia
0265-6736,
10
(
4
), pp.
457
483
.
18.
Sapareto
,
S. A.
, and
Dewey
,
W. C.
, 1984, “
Thermal Dose Determination in Cancer Therapy
,”
Int. J. Radiat. Oncol., Biol., Phys.
0360-3016,
10
(
6
), pp.
787
800
.
19.
Fajardo
,
L. F.
, 1984, “
Pathological Effects of Hyperthermia in Normal Tissues
,”
Cancer Res.
0008-5472,
44
, pp.
4826s
4835s
.
20.
Lyngt
,
H.
,
Monge
,
O. R.
,
Bohler
,
P. J.
, and
Rofstad
,
E. K.
, 1991, “
Relationships Between Thermal Dose and Heat-Induced Tissue and Vascular Damage After Thermoradiotherapy of Locally Advanced Breast Carcinoma
,”
Int. J. Hyperthermia
0265-6736,
7
(
3
), pp.
403
415
.
21.
Leopold
,
K. A.
,
Dewhirst
,
M.
,
Samulski
,
T.
,
Harrelson
,
J.
,
Tucker
,
J. A.
,
George
,
S. L.
,
Dodge
,
R. K.
,
Grant
,
W.
,
Clegg
,
S.
,
Prosnitz
,
L. R.
, and
Oleson
,
J. R.
, 1992, “
Relationships Among Tumor Temperature, Treatment Time, and Histopathological Outcome Using Preoperative Hyperthermia With Radiation in Soft Tissue Sarcomas
,”
Int. J. Radiat. Oncol., Biol., Phys.
0360-3016,
22
(
5
), pp.
989
998
.
22.
Roti Roti
,
J. L.
, and
Laszlo
,
A.
, 1988, “
The Effects of Hyperthermia on Cellular Macromolecules
,”
Hyperthermia and Oncology
,
M.
Urano
and
E.
Douple
, eds., Vol.
1
,
VST Scientific Press
,
Utrecht, Netherlands
, pp.
13
56
.
23.
Oleson
,
J. R.
,
Samulski
,
T. V.
,
Leopold
,
K. A.
,
Clegg
,
S. T.
,
Dewhirst
,
M. W.
,
Dodge
,
R. K.
, and
George
,
S. L.
, 1993, “
Sensitivity of Hyperthermia Trial Outcomes to Temperature and Time: Implications for Thermal Goals of Treatment
,”
Int. J. Radiat. Oncol., Biol., Phys.
0360-3016,
25
(
2
), pp.
289
297
.
24.
Dewhirst
,
M. W.
,
Viglianti
,
B. L.
,
Lora-Michiels
,
M.
,
Hanson
,
M.
, and
Hoopes
,
P. J.
, 2003, “
Basic Principles of Thermal Dosimetry and Thermal Thresholds for Tissue Damage From Hyperthermia
,”
Int. J. Hyperthermia
0265-6736,
19
(
3
), pp.
267
294
.
25.
He
,
X.
,
Wolkers
,
W. F.
,
Crowe
,
J. H.
,
Swanlund
,
D. J.
, and
Bischof
,
J. C.
, 2004, “
In Situ Thermal Denaturation of Proteins in Dunning AT-1 Prostate Cancer Cells: Implication for Hyperthermic Cell Injury
,”
Ann. Biomed. Eng.
0090-6964,
32
(
10
), pp.
1384
1398
.
26.
Bhowmick
,
S.
,
Swanlund
,
D. J.
, and
Bischof
,
J. C.
, 2000, “
Supraphysiological Thermal Injury in Dunning AT-1 Prostate Tumor Cells
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
1
), pp.
51
59
.
27.
Bhowmick
,
S.
,
Coad
,
J. E.
,
Swanlund
,
D. J.
, and
Bischof
,
J. C.
, 2004, “
In Vitro Thermal Therapy of AT-1 Dunning Prostate Tumours
,”
Int. J. Hyperthermia
0265-6736,
20
(
1
), pp.
73
92
.
28.
Bhowmick
,
S.
,
Hoffmann
,
N. E.
, and
Bischof
,
J. C.
, 2002, “
Thermal Therapy of Prostate Tumor Tissue in the Dorsal Skin Flap Chamber
,”
Microvasc. Res.
0026-2862,
64
(
1
), pp.
170
173
.
29.
Bhowmick
,
P.
,
Coad
,
J. E.
,
Bhowmick
,
S.
,
Pryor
,
J. L.
,
Larson
,
T.
,
De La Rosette
,
J.
, and
Bischof
,
J. C.
, 2004, “
In Vitro Assessment of the Efficacy of Thermal Therapy in Human Benign Prostatic Hyperplasia
,”
Int. J. Hyperthermia
0265-6736,
20
(
4
), pp.
421
439
.
30.
He
,
X.
, and
Bischof
,
J. C.
, 2005, “
The Kinetics of Thermal Injury in Human Renal Carcinoma Cells
,”
Ann. Biomed. Eng.
0090-6964,
33
(
4
), pp.
502
510
.
31.
Khumalo
,
T.
, 2007, “
Thermal Dose Models: Arrhenius Model Vs. Thermal Isoeffective Dose Model
.,” MS thesis, University of Minnesota, Minneapolis.
32.
He
,
X.
,
McGee
,
S.
,
Coad
,
J. E.
,
Schmidlin
,
F.
,
Iaizzo
,
P. A.
,
Swanlund
,
D. J.
,
Kluge
,
S.
,
Rudie
,
E.
, and
Bischof
,
J. C.
, 2004, “
Investigation of the Thermal and Tissue Injury Behaviour in Microwave Thermal Therapy Using a Porcine Kidney Model
,”
Int. J. Hyperthermia
0265-6736,
20
(
6
), pp.
567
593
.
33.
Issa
,
M.
, and
Marshall
,
F.
, 2005,
Contemporary Diagnosis and Management of Diseases of the Prostate
, 3rd ed.,
Handbooks in Healthcare
,
Newton, PA
.
34.
2003, “
Guideline on the Management of Benign Prostatic Hyperplasia (BPH)
,” American Urological Association Education and Research, Inc.
35.
2009, “
Cancer Facts & Figures
,” American Cancer Society, Inc., Atlanta, GA.
36.
Larson
,
B. T.
,
Bostwick
,
D. G.
,
Corica
,
A. G.
, and
Larson
,
T. R.
, 2003, “
Histological Changes of Minimally Invasive Procedures for the Treatment of Benign Prostatic Hyperplasia and Prostate Cancer: Clinical Implications
,”
J. Urol. (Baltimore)
0022-5347,
170
(
1
), pp.
12
19
.
37.
Zlotta
,
A. R.
, and
Djavan
,
B.
, 2002, “
Minimally Invasive Therapies for Benign Prostatic Hyperplasia in the New Millennium: Long-Term Data
,”
Curr. Opin. Urol.
,
12
(
1
), pp.
7
14
. 0963-0643
38.
Pirtskhalaishvili
,
G.
,
Hrebinko
,
R. L.
, and
Nelson
,
J. B.
, 2001, “
The Treatment of Prostate Cancer: An Overview of Current Options
,”
Cancer Pract.
1065-4704,
9
(
6
), pp.
295
306
.
39.
Savage
,
S. J.
, and
Gill
,
I. S.
, 2000, “
Renal Tumor Ablation: Energy-Based Technologies
,”
World J. Urol.
0724-4983,
18
(
4
), pp.
283
288
.
40.
Wen
,
C. C.
, and
Nakada
,
S. Y.
, 2006, “
Energy Ablative Techniques for Treatment of Small Renal Tumors
,”
Curr. Opin. Urol.
,
16
(
5
), pp.
321
326
. 0963-0643
41.
Borrelli
,
M. J.
,
Thompson
,
L. L.
,
Cain
,
C. A.
, and
Dewey
,
W. C.
, 1990, “
Time-Temperature Analysis of Cell Killing of BHK Cells Heated at Temperatures in the Range of 43.5 Degrees C to 57.0 Degrees C
,”
Int. J. Radiat. Oncol., Biol., Phys.
0360-3016,
19
(
2
), pp.
389
399
.
42.
Walsh
,
L. P.
,
Anderson
,
J. K.
,
Baker
,
M. R.
,
Han
,
B.
,
Hsieh
,
J. T.
,
Lotan
,
Y.
, and
Cadeddu
,
J. A.
, 2007, “
In Vitro Assessment of the Efficacy of Thermal Therapy in Human Renal Cell Carcinoma
,”
Urology
0090-4295,
70
(
2
), pp.
380
384
.
43.
Harris
,
M.
, 1966, “
Criterion of Viability in Heat-Treated Cells
,”
Exp. Cell Res.
0014-4827,
44
, pp.
658
661
.
44.
Jacques
,
S. L.
, 2006, “
Ratio of Entropy to Enthalpy in Thermal Transitions in Biological Tissues
,”
J. Biomed. Opt.
1083-3668,
11
(
4
), pp.
041108
.
45.
Lepock
,
J. R.
,
Frey
,
H. E.
,
Bayne
,
H.
, and
Markus
,
J.
, 1989, “
Relationship of Hyperthermia-Induced Hemolysis of Human Erythrocytes to the Thermal Denaturation of Membrane Proteins
,”
Biochim. Biophys. Acta
0006-3002,
980
(
2
), pp.
191
201
.
46.
Lepock
,
J. R.
,
Frey
,
H. E.
, and
Ritchie
,
K. P.
, 1993, “
Protein Denaturation in Intact Hepatocytes and Isolated Cellular Organelles During Heat Shock
,”
J. Cell Biol.
0021-9525,
122
(
6
), pp.
1267
1276
.
47.
Lepock
,
J. R.
, 2005, “
Measurement of Protein Stability and Protein Denaturation in Cells Using Differential Scanning Calorimetry
,”
Methods
1046-2023,
35
(
2
), pp.
117
125
.
48.
Shah
,
B.
, and
Bhowmick
,
S.
, 2006, “
Evaluation of Important Treatment Parameters in Supraphysiological Thermal Therapy of Human Liver Cancer HepG2 Cells
,”
Ann. Biomed. Eng.
0090-6964,
34
(
11
), pp.
1745
1757
.
You do not currently have access to this content.