Four commercially available stent designs (two balloon expandable—Bx Velocity and NIR, and two self-expanding—Wallstent and Aurora) were modeled to compare the near-wall flow characteristics of stented arteries using computational fluid dynamics simulations under pulsatile flow conditions. A flat rectangular stented vessel model was constructed and simulations were carried out using rigid walls and sinusoidal velocity input (nominal wall shear stress of 10±5dyn/cm2). Mesh independence was determined from convergence (<10%) of the axial wall shear stress (WSS) along the length of the stented model. The flow disturbance was characterized and quantified by the distributions of axial and transverse WSS, WSS gradients, and flow separation parameters. Normalized time-averaged effective WSS during the flow cycle was the smallest for the Wallstent (2.9dyn/cm2) compared with the others (5.8dyn/cm2 for the Bx Velocity stent, 5.0dyn/cm2 for the Aurora stent, and 5.3dyn/cm2 for the NIR stent). Regions of low mean WSS (<5dyn/cm2) and elevated WSS gradients (>20dyn/cm3) were also the largest for the Wallstent compared with the others. WSS gradients were the largest near the struts and remained distinctly nonzero for most of the region between the struts for all stent designs. Fully recirculating regions (as determined by separation parameter) were the largest for the Bx Velocity stent compared with the others. The most hemodynamically favorable stents from our computational analysis were the Bx Velocity and NIR stents, which were slotted-tube balloon-expandable designs. Since clinical data indicate lower restenosis rates for the Bx Velocity and NIR stents compared with the Wallstent, our data suggest that near-wall hemodynamics may predict some aspects of in vivo performance. Further consideration of biomechanics, including solid mechanics, in stent design is warranted.

1.
Kastrati
,
A.
,
Mehilli
,
J.
,
Dirschinger
,
J.
,
Pache
,
J.
,
Ulm
,
K.
,
Schuhlen
,
H.
,
Seyfarth
,
M.
,
Schmitt
,
C.
,
Blasini
,
R.
,
Neumann
,
F. J.
, and
Schomig
,
A.
, 2001, “
Restenosis After Coronary Placement of Various Stent Types
,”
Am. J. Cardiol.
0002-9149,
87
(
1
), pp.
34
39
.
2.
Edelman
,
E. R.
, and
Rogers
,
C.
, 1998, “
Pathobiologic Responses to Stenting
,”
Am. J. Cardiol.
0002-9149,
81
(
7A
), pp.
4E
6E
.
3.
Rogers
,
C.
, and
Edelman
,
E. R.
, 1995, “
Endovascular Stent Design Dictates Experimental Restenosis and Thrombosis
,”
Circulation
0009-7322,
91
, pp.
2995
3001
.
4.
Pache
,
J.
,
Kastrati
,
J.
,
Mehilli
,
H.
,
Schuhlen
,
H.
,
Dotzer
,
F.
,
Hausleiter
,
J.
,
Fleckenstein
,
M.
,
Newmann
,
F. J.
,
Sattleburger
,
U.
,
Schmitt
,
C.
,
Muller
,
M.
,
Dirschinger
,
J.
, and
Schomig
,
A.
, 2003, “
Intracoronary Stenting and Angiographic Results: Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO-2) Trial
,”
J. Am. Coll. Cardiol.
0735-1097,
41
(
8
), pp.
1283
1288
.
5.
Tominaga
,
R.
,
Kambic
,
H. E.
,
Emoto
,
H.
,
Harasaki
,
H.
,
Sutton
,
C.
, and
Hollman
,
J.
, 1992, “
Effects of Design Geometry of Intravascular Endoprostheses on Stenosis Rate in Normal Rabbits
,”
Am. Heart J.
0002-8703,
123
, pp.
21
28
.
6.
Morice
,
M. C.
,
Serruys
,
P. W.
,
Sousa
,
J. E.
,
Fajadet
,
J.
,
Ban Hayashi
,
E.
,
Perin
,
M.
,
Colombo
,
A.
,
Schuler
,
G.
,
Barragan
,
P.
,
Guagliumi
,
G.
,
Molnar
,
F.
, and
Falotico
,
R.
, 2002, “
A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization
,”
N. Engl. J. Med.
0028-4793,
349
, pp.
1315
23
.
7.
Wernick
,
M. H.
,
Jeremias
,
A.
, and
Carrozza
,
J. P.
, 2006, “
Drug-Eluting Stents and Stent Thrombosis: A Cause for Concern?
Coron. Artery Dis.
0954-6928,
17
(
8
), pp.
661
5
.
8.
Wentzel
,
J. J.
,
Krams
,
R.
,
Schuurbiers
,
J. C.
,
Oomen
,
J. A.
,
Kloet
,
J.
,
van Der Giessen
,
W. J.
,
Serruys
,
P. W.
, and
Slager
,
C. J.
, 2001, “
Relationship Between Neointimal Thickness and Shear Stress After Wallstent Implantation in Human Coronary Arteries
,”
Circulation
0009-7322,
103
(
13
), pp.
1740
1745
.
9.
Wentzel
,
J. J.
,
Gijsen
,
F. J.
,
Stergiopulos
,
N.
,
Serruys
,
P. W.
,
Slager
,
C. J.
, and
Krams
,
R.
, 2003, “
Shear Stress, Vascular Remodeling and Neointimal Formation
,”
J. Biomech.
0021-9290,
36
(
5
), pp.
681
8
.
10.
LaDisa
,
J. F.
, Jr.
,
Olson
,
L. E.
,
Guler
,
I.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2004, “
Circumferential Vascular Deformation After Stent Implantation Alters Wall Shear Stress Evaluated With Time-Dependent 3D Computational Fluid Dynamics Models
,”
J. Appl. Physiol.
8750-7587,
98
(
3
), pp.
947
57
.
11.
LaDisa
,
J. F.
, Jr.
,
Olson
,
L. E.
,
Guler
,
I.
,
Hettrick
,
D. A.
,
Audi
,
S. H.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2004, “
Stent Design Properties and Deployment Ratio Influence Indexes of Wall Shear Stress: A Three-Dimensional Computational Fluid Dynamics Investigation Within a Normal Artery
,”
J. Appl. Physiol.
8750-7587,
97
(
1
), pp.
424
30
.
12.
He
,
Y.
,
Duraiswamy
,
N.
,
Frank
,
A. O.
, and
Moore
,
J. E.
, Jr.
, 2005, “
Blood Flow in Stented Arteries: A Parametric Comparison of Strut Design Patterns in Three Dimensions
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
4
), pp.
637
47
.
13.
Balossino
,
R.
,
Gervaso
,
F.
,
Migliavacca
,
F.
, and
Dibini
,
G.
, 2008, “
Effects of Different Stent Designs on Local Hemodynamics in Stented Arteries
,”
J. Biomech.
0021-9290,
41
, pp.
1053
1061
.
14.
Kleinstreuer
,
C.
,
Hyun
,
S.
,
Buchanan
,
J. R.
,
Longest
,
P. W.
,
Archie
,
J. P.
, and
Truskey
,
G. A.
, 2001, “
Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels
,”
Crit. Rev. Biomed. Eng.
0278-940X,
29
(
1
), pp.
1
64
.
15.
Akagawa
,
E.
,
Ookawa
,
K.
, and
Ohshima
,
N.
, 2004, “
Endovascular Stent Configuration Affects Intraluminal Flow Dynamics and In Vitro Endothelialization
,”
Biorheology
0006-355X,
41
(
6
), pp.
665
80
.
16.
Mejia
,
J.
,
Mongrain
,
R.
,
Drapeau
,
G.
,
Cabau-Rodes
,
J.
, and
Bertrand
,
O. F.
, 2008, “
A Numerical and Experimental Study of Blood Disturbances in a Stented Arterial Segment: Flat vs. Cylindrical Mock-Ups
,”
Proceedings of the ASME 2008 Summer Bioengineering Conference
, Marco Island, FL, Jun. 25–29.
17.
Friedman
,
M. H.
, and
Deters
,
O. J.
, 1987, “
Correlations Among Shear Rate Measures in Vascular Flows
,”
ASME J. Biomech. Eng.
0148-0731,
109
(
1
), pp.
25
26
.
18.
Moore
,
J. E.
, Jr.
,
Xu
,
C.
,
Glagov
,
S.
,
Zarins
,
C. K.
, and
Ku
,
D. N.
, 1994, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis
,”
Atherosclerosis
0021-9150,
110
(
2
), pp.
225
40
.
19.
Ojha
,
M.
, 1993, “
Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model
,”
J. Biomech.
0021-9290,
26
(
12
), pp.
1377
88
.
20.
Longest
,
P. W.
, and
Kleinstreuer
,
C.
, 2000, “
Computational Haemodynamics Analysis and Comparison Study of Arterio-Venous Grafts
,”
J. Med. Eng. Technol.
0309-1902,
24
(
3
), pp.
102
10
.
21.
Keynton
,
R. S.
,
Evancho
,
M. M.
,
Sims
,
R. L.
,
Rodway
,
N. V.
,
Gobin
,
A.
, and
Rittgers
,
S. E.
, 2001, “
Intimal Hyperplasia and Wall Shear in Arterial Bypass Graft Distal Anastomoses: An In Vivo Model Study
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
464
73
.
22.
LaDisa
,
J. F.
, Jr.
,
Olson
,
L. E.
,
Molthen
,
R. C.
,
Hettrick
,
D. A.
,
Pratt
,
P. F.
,
Hardel
,
M. D.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
, and
Pagel
,
P. S.
, 2005, “
Alterations in Wall Shear Stress Predict Sites of Neointimal Hyperplasia After Stent Implantation in Rabbit Iliac Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
, pp.
H2465
H2475
.
23.
Liu
,
S. Q.
, and
Goldman
,
J.
, 2001, “
Role of Blood Shear Stress in the Regulation of Vascular Smooth Muscle Cell Migration
,”
IEEE Trans. Biomed. Eng.
0018-9294,
48
(
4
), pp.
474
83
.
24.
Fillinger
,
M. F.
,
Reinitz
,
E. R.
,
Schwartz
,
R. A.
,
Resetarits
,
D. E.
,
Paskanik
,
A. M.
,
Bruch
,
D.
, and
Bredenberg
,
C. E.
, 1990, “
Graft Geometry and Venous Intimal-Medial Hyperplasia in Arteriovenous Loop Grafts
,”
J. Vasc. Surg.
0741-5214,
11
(
4
), pp.
556
566
.
25.
Nageh
,
T.
,
de Belder
,
A. J.
,
Thomas
,
M. R.
,
Williams
,
I. L.
, and
Wainwright
,
R. J.
, 2001, “
A Randomised Trial of Endoluminal Reconstruction Comparing the NIR Stent and the Wallstent in Angioplasty of Long Segment Coronary Disease: Results of the RENEWAL Study
,”
Am. Heart J.
0002-8703,
141
(
6
), pp.
971
976
.
26.
Escaned
,
J.
,
Goicolea
,
J.
,
Alfonso
,
F.
,
Perez-Vizcayno
,
M. J.
,
Hernandez
,
R.
,
Fernandez-Ortiz
,
A.
,
Banuelos
,
C.
, and
Macaya
,
C.
, 1999, “
Propensity and Mechanisms of Restenosis in Different Coronary Stent Designs: Complementary Value of the Analysis of the Luminal Gain-Loss Relationship
,”
J. Am. Coll. Cardiol.
0735-1097,
34
(
5
), pp.
1490
7
.
27.
Bosiers
,
M.
,
Deloose
,
K.
,
Verbist
,
J.
, and
Peeters
,
P.
, 2005, “
Carotid Artery Stenting: Which Stent for Which Lesion?
Vascular
,
13
(
4
), pp.
205
210
. 1708-5381
28.
Colombo
,
A.
,
Drzewiecki
,
J.
,
Banning
,
A.
,
Grube
,
E.
,
Hauptmann
,
K.
,
Silber
,
S.
,
Dudek
,
D.
,
Fort
,
S.
,
Schiele
,
F.
,
Zmudka
,
K.
,
Guagliumi
,
G.
, and
Russell
,
M.
, 2003, “
Randomized Study to Assess the Effectiveness of Slow- and Moderate-Release Polymer-Based Paclitaxel-Eluting Stents for Coronary Artery Lesions
,”
Circulation
0009-7322,
108
, pp.
788
794
.
29.
Morice
,
M. C.
,
Serruys
,
P. W.
,
Sousa
,
E.
,
Fajadet
,
J.
,
Hayashi
,
E. B.
,
Perin
,
M.
,
Colombo
,
A.
,
Schuler
,
G.
,
Barragan
,
P.
,
Guagliumi
,
G.
,
Molnar
,
F.
, and
Falotico
,
R.
, 2002, “
A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization
,”
N. Engl. J. Med.
0028-4793,
346
(
23
), pp.
1773
1780
.
30.
Duraiswamy
,
N.
,
Jayachandran
,
B.
,
Byrne
,
J.
,
Moore
,
J. E.
, Jr.
, and
Schoephoerster
,
R. T.
, 2005, “
Spatial Distribution of Platelet Deposition in Stented Arterial Models Under Physiologic Flow
,”
Ann. Biomed. Eng.
0090-6964,
33
(
12
), pp.
1767
1777
.
31.
Henry
,
F. S.
, 2000, “
Flow in Stented Arteries
,”
Intra- and Extracorporeal Cardiovascular Fluid Dynamics
,
P.
Verdonck
and
K.
Perktold
, eds., pp.
333
364
.
You do not currently have access to this content.