Cartilage is a hydrated soft tissue whose solid matrix consists of negatively charged proteoglycans enmeshed within a fibrillar collagen network. Though many aspects of cartilage mechanics are well understood today, most notably in the context of porous media mechanics, there remain a number of responses observed experimentally whose prediction from theory has been challenging. In this study the solid matrix of cartilage is modeled with a continuous fiber angular distribution, where fibers can only sustain tension, swelled by the osmotic pressure of a proteoglycan ground matrix. It is shown that this representation of cartilage can predict a number of observed phenomena in relation to the tissue’s equilibrium response to mechanical and osmotic loading, when flow-dependent and flow-independent viscoelastic effects have subsided. In particular, this model can predict the transition of Poisson’s ratio from very low values in compression (0.02) to very high values in tension (2.0). Most of these phenomena cannot be explained when using only three orthogonal fiber bundles to describe the tissue matrix, a common modeling assumption used to date. The main picture emerging from this analysis is that the anisotropy of the fibrillar matrix of articular cartilage is intimately dependent on the mechanism of tensed fiber recruitment, in the manner suggested by our recent theoretical study (Ateshian, 2007, ASME J. Biomech. Eng., 129(2), pp. 240–249).

1.
Kempson
,
G. E.
,
Freeman
,
M. A.
, and
Swanson
,
S. A.
, 1968, “
Tensile Properties of Articular Cartilage
,”
Nature (London)
0028-0836,
220
(
5172
), pp.
1127
1128
.
2.
Maroudas
,
A.
, 1968, “
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
,”
Biophys. J.
0006-3495,
8
(
5
), pp.
575
595
.
3.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
4
), pp.
491
496
.
4.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 2000, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
6
), pp.
576
586
.
5.
Loret
,
B.
, and
Simoes
,
F. M. F.
, 2005, “
Mechanical Effects of Ionic Replacements in Articular Cartilage. Part I: The Constitutive Model
,”
Biomech. Model. Mechanobiol.
1617-7959,
4
(
2–3
), pp.
63
80
.
6.
Lanir
,
Y.
, 1987, “
Biorheology and Fluid Flux in Swelling Tissues. I. Bicomponent Theory for Small Deformations, Including Concentration Effects
,”
Biorheology
0006-355X,
24
(
2
), pp.
173
187
.
7.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
3
), pp.
340
347
.
8.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
, 2005, “
A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
0021-9290,
38
(
6
), pp.
1195
204
.
9.
Li
,
L. P.
, and
Herzog
,
W.
, 2004, “
The Role of Viscoelasticity of Collagen Fibers in Articular Cartilage: Theory and Numerical Formulation
,”
Biorheology
0006-355X,
41
(
3–4
), pp.
181
194
.
10.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2001, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
410
417
.
11.
Park
,
S.
,
Krishnan
,
R.
,
Nicoll
,
S. B.
, and
Ateshian
,
G. A.
, 2003, “
Cartilage Interstitial Fluid Load Support in Unconfined Compression
,”
J. Biomech.
0021-9290,
36
(
12
), pp.
1785
1796
.
12.
Ateshian
,
G. A.
, 2007, “
Anisotropy of Fibrous Tissues in Relation to the Distribution of Tensed and Buckled Fibers
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
2
), pp.
240
249
.
13.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
14.
Lee
,
R. C.
,
Frank
,
E. H.
,
Grodzinsky
,
A. J.
, and
Roylance
,
D. K.
, 1981, “
Oscillatory Compressional Behavior of Articular Cartilage and Its Associated Electromechanical Properties
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
4
), pp.
280
292
.
15.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 1998, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
0021-9290,
31
(
10
), pp.
927
934
.
16.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 2000, “
Interstitial Fluid Pressurization During Confined Compression Cyclical Loading of Articular Cartilage
,”
Ann. Biomed. Eng.
0090-6964,
28
(
2
), pp.
150
159
.
17.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Athanasiou
,
K. A.
, 1989, “
Biphasic Indentation of Articular Cartilage—II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
0021-9290,
22
(
8–9
), pp.
853
861
.
18.
Lanir
,
Y.
, 1987, “
Biorheology and Fluid Flux in Swelling Tissues, II. Analysis of Unconfined Compressive Response of Transversely Isotropic Cartilage Disc
,”
Biorheology
0006-355X,
24
(
2
), pp.
189
205
.
19.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
,
Ito
,
K.
, and
Huiskes
,
R.
, 2004, “
Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study
,”
J. Biomech.
0021-9290,
37
(
3
), pp.
357
366
.
20.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Suh
,
J. K.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I–Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
191
197
.
21.
Park
,
S.
, and
Ateshian
,
G. A.
, 2006, “
Dynamic Response of Immature Bovine Articular Cartilage in Tension and Compression, and Nonlinear Viscoelastic Modeling of the Tensile Response
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
4
), pp.
623
630
.
22.
Wong
,
M.
,
Ponticiello
,
M.
,
Kovanen
,
V.
, and
Jurvelin
,
J. S.
, 2000, “
Volumetric Changes of Articular Cartilage During Stress Relaxation in Unconfined Compression
,”
J. Biomech.
0021-9290,
33
(
9
), pp.
1049
1054
.
23.
Wang
,
C. C.
,
Deng
,
J. M.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2002, “
An Automated Approach for Direct Measurement of Two-Dimensional Strain Distributions Within Articular Cartilage Under Unconfined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
5
), pp.
557
567
.
24.
Chahine
,
N. O.
,
Wang
,
C. C.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2004, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
0021-9290,
37
(
8
), pp.
1251
1261
.
25.
Elliott
,
D. M.
,
Narmoneva
,
D. A.
, and
Setton
,
L. A.
, 2002, “
Direct Measurement of the Poisson’s Ratio of Human Patella Cartilage in Tension
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
2
), pp.
223
228
.
26.
Huang
,
C. Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 2005, “
Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
0021-9290,
38
(
4
), pp.
799
809
.
27.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
, 1986, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
0736-0266,
4
(
4
), pp.
379
392
.
28.
Brown
,
T. D.
, and
Singerman
,
R. J.
, 1986, “
Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis
,”
J. Biomech.
0021-9290,
19
(
8
), pp.
597
605
.
29.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
Van Donkelaar
,
C. C.
, 2007, “
Depth-Dependent Compressive Equilibrium Properties of Articular Cartilage Explained by Its Composition
,”
Biomech. Model. Mechanobiol.
1617-7959,
6
(
1–2
), pp.
43
53
.
30.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
245
258
.
31.
Ehrlich
,
S.
,
Wolff
,
N.
,
Schneiderman
,
R.
,
Maroudas
,
A.
,
Parker
,
K. H.
, and
Winlove
,
C. P.
, 1998, “
The Osmotic Pressure of Chondroitin Sulphate Solutions: Experimental Measurements and Theoretical Analysis
,”
Biorheology
0006-355X,
35
(
6
), pp.
383
397
.
32.
Chahine
,
N. O.
,
Chen
,
F. H.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2005, “
Direct Measurement of Osmotic Pressure of Glycosaminoglycan Solutions by Membrane Osmometry at Room Temperature
,”
Biophys. J.
0006-3495,
89
(
3
), pp.
1543
1550
.
33.
Overbeek
,
J. T.
, 1956, “
The Donnan Equilibrium
,”
Prog. Biophys. Biophys. Chem.
0096-4174,
6
, pp.
57
84
.
34.
Azeloglu
,
E. U.
,
Albro
,
M. B.
,
Thimmappa
,
V. A.
,
Ateshian
,
G. A.
, and
Costa
,
K. D.
, 2008, “
Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stresses in the Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
294
(
3
), pp.
H1197
H1205
.
35.
Curnier
,
A.
,
Qi-Chang
,
H.
, and
Zysset
,
P.
, 1994, “
Conewise Linear Elastic Materials
,”
J. Elast.
0374-3535,
37
(
1
), pp.
1
38
.
36.
Bonet
,
J.
, and
Wood
,
R. D.
, 1997,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge
.
37.
Lanir
,
Y.
, 1979, “
The Rheological Behavior of the Skin: Experimental Results and a Structural Model
,”
Biorheology
0006-355X,
16
(
3
), pp.
191
202
.
38.
Lanir
,
Y.
, 1983, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
0021-9290,
16
(
1
), pp.
1
12
.
39.
Humphrey
,
J. D.
, and
Yin
,
F. C.
, 1987, “
A New Constitutive Formulation for Characterizing the Mechanical Behavior of Soft Tissues
,”
Biophys. J.
0006-3495,
52
(
4
), pp.
563
570
.
40.
Narmoneva
,
D. A.
,
Wang
,
J. Y.
, and
Setton
,
L. A.
, 2001, “
A Noncontacting Method for Material Property Determination for Articular Cartilage From Osmotic Loading
,”
Biophys. J.
0006-3495,
81
(
6
), pp.
3066
3076
.
41.
Buschmann
,
M. D.
, and
Grodzinsky
,
A. J.
, 1995, “
A Molecular Model of Proteoglycan-Associated Electrostatic Forces in Cartilage Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
117
(
2
), pp.
179
192
.
42.
Armstrong
,
C. G.
, and
Mow
,
V. C.
, 1982, “
Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage With Age, Degeneration, and Water Content
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
64
(
1
), pp.
88
94
.
43.
Kempson
,
G. E.
,
Muir
,
H.
,
Pollard
,
C.
, and
Tuke
,
M.
, 1973, “
The Tensile Properties of the Cartilage of Human Femoral Condyles Related to the Content of Collagen and Glycosaminoglycans
,”
Biochim. Biophys. Acta
0006-3002,
297
(
2
), pp.
456
472
.
44.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
, 1997, “
Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
0021-9290,
30
(
3
), pp.
235
241
.
45.
Schmidt
,
M. B.
,
Mow
,
V. C.
,
Chun
,
L. E.
, and
Eyre
,
D. R.
, 1990, “
Effects of Proteoglycan Extraction on the Tensile Behavior of Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
8
(
3
), pp.
353
363
.
46.
Grodzinsky
,
A. J.
,
Roth
,
V.
,
Myers
,
E.
,
Grossman
,
W. D.
, and
Mow
,
V. C.
, 1981, “
The Significance of Electromechanical and Osmotic Forces in the Nonequilibrium Swelling Behavior of Articular Cartilage in Tension
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
4
), pp.
221
231
.
47.
Lanir
,
Y.
, 1983, “
Constitutive Equations for the Lung Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
105
(
4
), pp.
374
380
.
48.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
327
335
.
49.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
280
287
.
50.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 2000, “
A Fibril Reinforced Nonhomogeneous Poroelastic Model for Articular Cartilage: Inhomogeneous Response in Unconfined Compression
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1533
1541
.
51.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Toyras
,
J.
,
Lappalainen
,
R.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2003, “
Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular Cartilage
,”
J. Biomech.
0021-9290,
36
(
9
), pp.
1373
1379
.
52.
Ateshian
,
G. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
, 2007, “
Equivalence Between Short-Time Biphasic and Incompressible Elastic Material Responses
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
3
), pp.
405
412
.
53.
Loret
,
B.
, and
Simoes
,
F. M. F.
, 2005, “
Mechanical Effects of Ionic Replacements in Articular Cartilage. Part II: Simulations of Successive Substitutions of NaCl and CaCl(2)
,”
Biomech. Model. Mechanobiol.
1617-7959,
4
(
2–3
), pp.
81
99
.
54.
Myers
,
E. R.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1984, “
A Continuum Theory and an Experiment for the Ion-Induced Swelling Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
106
(
2
), pp.
151
158
.
55.
Loret
,
B.
, and
Simoes
,
F. M. F.
, 2004, “
Articular Cartilage With Intra- and Extrafibrillar Waters: A Chemo-Mechanical Model
,”
Mech. Mater.
0167-6636,
36
(
5–6
), pp.
515
541
.
56.
Wachtel
,
E.
, and
Maroudas
,
A.
, 1998, “
The Effects of pH and Ionic Strength on Intrafibrillar Hydration in Articular Cartilage
,”
Biochim. Biophys. Acta
0006-3002,
1381
(
1
), pp.
37
48
.
57.
Huyghe
,
J. M.
, 1999, “
Intra-Extrafibrillar Mixture Formulation of Soft Charged Hydrated Tissues
,”
Theor Appl. Mech.
0285-6042,
37
, pp.
519
536
.
58.
Frank
,
E. H.
,
Grodzinsky
,
A. J.
,
Phillips
,
S. L.
, and
Grimshaw
,
P. E.
, 1990, “
Physicochemical and Bioelectrical Determinants of Cartilage Material Properties
,” in
Biomechanics of Diarthrodial Joints
,
V. C.
Mow
,
A.
Ratcliffe
, and
S. L.
Woo
, eds.,
Springer-Verlag
,
New York
, Vol.
I
, pp.
261
282
.
59.
Waigh
,
T. A.
, 2007,
Applied Biophysics: A Molecular Approach for Physical Scientists
,
Wiley
,
Chichester, England
.
You do not currently have access to this content.