A previously developed laser spallation technique to determine the tensile strength of thin film interfaces was successfully adopted to study the effect of microsurface roughness of titanium disks on the adhesion strength of mineralized bone tissue. The study demonstrated that mineralized tissue has about 25% higher interfacial strength when it is cultured on the acid-etched titanium surface than on its machined counterpart. Specifically, interfacial tensile strength of 179±4.4MPa and 224±2.6MPa were measured when the mineralized tissue was processed on the machined titanium and acid-etched titanium surfaces, respectively. Since in the laser spallation experiment, the mineralized tissue is pulled normal to the interface, this increase is attributed to the stronger interfacial bonding on account of higher surface energy associated with the acid-etched surface. This enhanced local chemical bonding further enhances the roughness-related mechanical interlocking effect. These two effects at very different length scales—atomic (enhanced bonding) versus continuum (roughness-related interlocking)—act synergistically and explain the widely observed clinical success of roughened dental implants.

1.
LeGeros
,
R. Z.
, and
Craig
,
R. G.
, 1993, “
Strategies to Affect Bone Remodeling: Osteointegration
,”
J. Bone Miner. Res.
,
8
(
2
), pp.
583
596
. 0884-0431
2.
Stach
,
R. M.
, and
Kohles
,
S. S.
, 2003, “
A Meta-Analysis Examining the Clinical Survivability of Machined-Surfaced and Osseotite Implants in Poor-Quality Bone
,”
Implant Dent.
,
12
(
1
), pp.
87
96
. 1056-6163
3.
Cochran
,
D. L.
, 1999, “
A Comparison of Endosseous Dental Implant Surfaces
,”
J. Periodontol.
,
70
(
12
), pp.
1523
1539
. 0022-3492
4.
Ogawa
,
T.
, and
Nishimura
,
I.
, 2003, “
Different Bone Integration Profiles of Turned and Acid-Etched Implants Associated With Modulated Expression of Extracellular Matrix Genes
,”
Int. J. Oral Maxillofac Implants
,
18
(
2
), pp.
200
210
. 0882-2786
5.
Ogawa
,
T.
,
Sukotjo
,
C.
, and
Nishimura
,
I.
, 2002, “
Modulated Bone Matrix-Related Gene Expression in Associated With Differences in Interfacial Strength of Different Implant Surface Roughness
,”
J. Prosthodont
,
11
(
4
), pp.
241
247
. 1059-941X
6.
Ogawa
,
T.
,
Ozawa
,
S.
,
Shih
,
J. H.
,
Ryu
,
K. H.
,
Sukotjo
,
C.
,
Yang
,
J. M.
, and
Nishimura
,
I.
, 2000, “
Biomechanical Evaluation of Osseous Implants Having Different Surface Topographies in Rats
,”
J. Dent. Res.
,
79
, pp.
1857
1863
. 0022-0345
7.
Takeuchi
,
K.
,
Saruwatari
,
L.
,
Nakamura
,
H. K.
,
Yang
,
J. M.
, and
Ogawa
,
T.
, 2005, “
Enhanced Intrinsic Biomechanical Properties of Osteoblastic Mineralized Tissue on Roughened Titanium Surface
,”
J. Biomed. Mater. Res.
,
72A
(
3
), pp.
296
305
. 0021-9304
8.
Nakamura
,
H. K.
,
Shim
,
J. W.
,
Butz
,
F.
,
Aita
,
H.
Gupta
,
V.
, and
Ogawa
,
T.
, 2006, “
Glycosaminoglycan Degradation Reduces Mineralized Tissue-Titanium Interfacial Strength
,”
J. Biomed. Mater. Res.
0021-9304,
77A
, pp.
478
486
.
9.
Grizon
,
F.
,
Aguado
,
E.
,
Hure
,
G.
,
Basle
,
M. F.
, and
Chappard
,
D.
, 2002, “
Enhanced Bone Integration of Implants With Increased Surface Roughness: A Long Term Study in the Sheep
,”
J. Dent.
,
30
(
5–6
), pp.
195
203
. 0300-5712
10.
London
,
R. M.
,
Roberts
,
F. A.
,
Baker
,
D. A.
,
Rohrer
,
M. E. D.
, and
O’Neal
,
R. B.
, 2002, “
Histologic Comparison of a Thermal Dual-Etched Implant Surface to Machined, TPS, and HA Surfaces: Bone Contact In Vivo in Rabbits
,”
Int. J. Oral Maxillofac Implants
,
17
(
3
), pp.
369
376
. 0882-2786
11.
Trisi
,
P.
,
Rao
,
W.
, and
Rebaudi
,
A.
, 1999, “
A Histometric Comparison of Smooth and Rough Titanium Implants in Human Low-Density Jawbones
,”
Int. J. Oral Maxillofac Implants
,
14
(
5
), pp.
689
698
. 0882-2786
12.
Wong
,
M.
,
Eulenberger
,
J.
,
Schenk
,
R.
, and
Hunziker
,
E.
, 1995, “
Effect of Surface Topology on the Osseointegration of Implant Materials in Trabecular Bone
,”
J. Biomed. Mater. Res.
0021-9304,
29
(
12
), pp.
1567
1575
.
13.
Gotfredsen
,
K.
,
Wennerberg
,
A.
,
Johansson
,
C.
,
Skovgaard
,
L. T.
, and
Hjørting-Hansen
,
E.
, 1995, “
Anchorage of TiO2-Blasted, HA-Coated, and Machined Implants: An Experimental Study With Rabbits
,”
J. Biomed. Mater. Res.
,
29
, pp.
1223
1231
. 0021-9304
14.
Hallgren
,
C.
,
Reimers
,
H.
,
Chakarov
,
D.
,
Gold
,
J.
, and
Wennerberg
,
A.
, 2003, “
An In Vivo Study of Bone Response to Implants Topographically Modified by Laser Micromachining
,”
Biomaterials
,
24
, pp.
701
710
. 0142-9612
15.
Hallgren
,
C.
,
Reimers
,
H.
,
Gold
,
J.
, and
Wennerberg
,
A.
, 2001, “
The Importance of Surface Texture for Bone Integration of Screw Shaped Implants: An In Vivo Study of Implants Patterned by Photolithography
,”
J. Biomed. Mater. Res.
,
57
, pp.
485
496
. 0021-9304
16.
Han
,
C. H.
,
Johansson
,
C. B.
,
Wennerberg
,
A.
, and
Albrektsson
,
T.
, 1998, “
Quantitative and Qualitative Investigations of Surface Enlarged Titanium and Titanium Alloy Implants
,”
Clin. Oral Implants Res.
,
9
, pp.
1
10
. 0905-7161
17.
Hulshoff
,
J. E.
,
Hayakawa
,
T.
,
van Dijk
,
K.
,
Leijdekkers-Govers
,
A. F.
,
van der Waerden
,
J. P.
, and
Jansen
,
J. A.
, 1997, “
Mechanical and Histologic Evaluation of Ca-P Plasma-Spray and Magnetron Sputter-Coated Implants in Trabecular Bone of the Goat
,”
J. Biomed. Mater. Res.
,
36
, pp.
75
83
. 0021-9304
18.
Vercaigne
,
S.
,
Wolke
,
J. G.
,
Naert
,
I.
, and
Jansen
,
J. A.
, 2000, “
A Mechanical Evaluation of TiO2 Gritblasted and Ca-P Magnetron Sputter Coated Implants Placed Into the Trabecular Bone of the Goat: Part 1
,”
Clin. Oral Implants Res.
,
11
, pp.
305
313
. 0905-7161
19.
Vercaigne
,
S.
,
Wolke
,
J. G.
,
Naert
,
I.
, and
Jansen
,
J. A.
, 2000, “
A Histological Evaluation of TiO2-Gritblasted and Ca-P Magnetron Sputter Coated Implants Placed Into the Trabecular Bone of the Goat: Part 2
,”
Clin. Oral Implants Res.
,
11
, pp.
314
324
. 0905-7161
20.
Wennerberg
,
A.
,
Albrektsson
,
T.
, and
Lausmaa
,
J.
, 1996, “
Torque and Histomorphometric Evaluation of C.P. Titanium Screws Blasted With 25- and 75-μm-sized particles of Al2O3
,”
J. Biomed. Mater. Res.
,
30
, pp.
251
260
. 0021-9304
21.
Wennerberg
,
A.
,
Albrektsson
,
T.
,
Andersson
,
B.
, and
Krol
,
J. J.
, 1995, “
A Histomorphometric and Removal Torque Study of Screw-Shaped Titanium Implants With Three Different Surface Topographies
,”
Clin. Oral Implants Res.
,
6
, pp.
24
30
. 0905-7161
22.
Dhert
,
W. J.
,
Klein
,
C. P.
,
Wolke
,
J. G.
,
van der Velde
,
E. A.
,
de Groot
,
K.
, and
Rozing
,
P. M.
, 1991, “
A Mechanical Investigation of Fluorapatite, Magnesiumwhitlockite, and Hydroxylapatite Plasma-Sprayed Coatings in Goats
,”
J. Biomed. Mater. Res.
,
25
, pp.
1183
1200
. 0021-9304
23.
Dhert
,
W. J.
,
Klein
,
C. P.
,
Jansen
,
J. A.
,
van der Velde
,
E. A.
,
Vriesde
,
R. C.
, and
Rozing
,
P. M.
, 1993, “
A Histological and Histomorphometrical Investigation of Fluorapatite, Magnesiumwhitlockite, and Hydroxylapatite Plasma-Sprayed Coatings in Goats
,”
J. Biomed. Mater. Res.
,
27
, pp.
127
138
. 0021-9304
24.
Hallgren
,
C.
,
Sawase
,
T.
,
Ortengren
,
U.
, and
Wennerberg
,
A.
, 2001, “
Histomorphometric and Mechanical Evaluation of the Bone-Tissue Response to Implants Prepared With Different Orientation of Surface Topography
,”
Clin. Implant Dent. Relat. Res.
,
3
, pp.
194
203
.
25.
Rupprecht
,
S.
,
Bloch
,
A.
,
Rosiwal
,
S.
,
Neukam
,
F. W.
, and
Wiltfang
,
J.
, 2002, “
Examination of the Bone-Metal Interface of Titanium Implants Coated by the Microwave Plasma Chemical Vapor Deposition Method
,”
Int. J. Oral Maxillofac Implants
,
17
, pp.
778
785
. 0882-2786
26.
Vercaigne
,
S.
,
Wolke
,
J. G.
,
Naert
,
I.
, and
Jansen
,
J. A.
, 1998, “
Bone Healing Capacity of Titanium Plasma-Sprayed and Hydroxylapatite-Coated Oral Implants
,”
Clin. Oral Implants Res.
,
9
, pp.
261
271
. 0905-7161
27.
Shalabi
,
M. M.
,
Gortemaker
,
A.
,
Van’t Hof
,
M. A.
,
Jansen
,
J. A.
, and
Creugers
,
N. H. J.
, 2006, “
Implant Surface Roughness and Bone Healing: A Systematic Review
,”
J. Dent. Res.
,
85
(
6
), pp.
496
500
. 0022-0345
28.
Gupta
,
V.
,
Argon
,
A. S.
,
Parks
,
D. M.
, and
Cornie
,
J. A.
, 1992, “
Measurement of Interface Strength by Laser Spallation Experiment
,”
J. Mech. Phys. Solids
0022-5096,
40
(
1
), pp.
141
180
.
29.
Yuan
,
J.
, and
Gupta
,
V.
, 1993, “
Measurement of Interface Strength by the Modified Laser Spallation Experiment. Part I: Experimental Technique and Modeling the Spallation Process
,”
J. Appl. Phys.
0021-8979,
74
(
4
), pp.
2388
2404
.
30.
Yuan
,
J.
,
Gupta
,
V.
, and
Pronin
,
A. N.
, 1993, “
Measurement of Interface Strength by the Modified Laser Spallation Experiment. Part II: Experimental Optimization of the Stress Pulse
,”
J. Appl. Phys.
0021-8979,
74
(
4
), pp.
2405
2410
.
31.
Gupta
,
V.
,
Yuan
,
J.
, and
Pronin
,
A. N.
, 1993, “
Nanosecond Rise Time Laser Produced Stress Pulses With No Asymptotic Decay
,”
Rev. Sci. Instrum.
0034-6748,
64
(
6
), pp.
1611
1613
.
32.
Gupta
,
V.
,
Yuan
,
J.
, and
Pronin
,
A. N.
, 1994, “
Recent Developments in the Laser Spallation Technique to Measure the Interface Strength and Its Relationship to Interface Toughness With Applications to Metal/Ceramic, Ceramic/Ceramic and Ceramic/Polymer Interfaces
,”
J. Adhes. Sci. Technol.
,
8
(
6
), pp.
713
747
. 0169-4243
33.
Pronin
,
A.
, and
Gupta
,
V.
, 1993, “
Interferometry on Diffuse Surfaces in High-Velocity Measurements
,”
Rev. Sci. Instrum.
0034-6748,
64
(
8
), pp.
2233
2236
.
34.
Mal
,
A. K.
,
Banerjee
,
S.
,
Shim
,
J. W.
,
Hagerman
,
E.
,
Wu
,
B.
, and
Gupta
,
V.
, 2005, “
Measurement of Thin Film Interfacial Properties Using a Nanosecond Laser Source
,”
Proceedings of the Second International Symposium on Mechanical Science Based on Nanotechnology
.
35.
Hagerman
,
E
,
Shim
J
,
Gupta
,
V.
, and
Wu
,
B.
, 2007, “
Evaluation of Laser Spallation as a Technique for Measurement of Cell Adhesion Strength
,”
J. Biomed. Mater. Res.
,
82A
, pp.
852
860
. 0021-9304
36.
Yuan
,
J.
, and
Gupta
,
V.
, 1995, “
The Effect of Microstructure and Chemistry on the Tensile Strength of Nb/Sapphire Interfaces, With and Without the Interlayers of Cr and Sb
,”
Acta Metall. Mater.
,
43
(
2
), pp.
781
794
. 0956-7151
37.
Yuan
,
J.
,
Gupta
,
V.
, and
Kim
,
M.
, 1995, “
Structure and Chemistry of Nb/Sapphire Interfaces, With and Without the Interlayers of Sb and Cr
,”
Acta Metall. Mater.
,
43
(
2
), pp.
769
779
. 0956-7151
38.
Gupta
,
V.
,
Wu
,
J.
, and
Pronin
,
A. N.
, 1997, “
Effect of Substrate Orientation and Deposition Mode on the Tensile Strength and Toughness of Nb/Sapphire Interfaces
,”
J. Am. Ceram. Soc.
,
80
(
12
), pp.
3172
3178
. 0002-7820
39.
Lev
,
L. C.
, and
Argon
,
A. S.
, 1996, “
Spallation of Thin Elastic Coatings From Elastic Substrates by Laser Induced Pressure Pulses
,”
J. Appl. Phys.
0021-8979,
80
(
1
), pp.
529
542
.
40.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
, pp.
1564
1583
.
41.
Hoffler
,
C. E.
,
Moore
,
K. E.
,
Kozloff
,
K.
,
Zysset
,
P. K.
,
Brown
,
M. B.
, and
Goldstein
,
S. A.
, 2000, “
Heterogeneity of Bone Lamellar-Level Elastic Moduli
,”
Bone (N.Y.)
8756-3282,
26
(
6
), pp.
603
609
.
42.
Klokkevold
,
P. R.
,
Johnson
,
P.
,
Dadgostari
,
S.
,
Caputo
,
A.
,
Davies
,
J. E.
, and
Nishimura
,
R. D.
, 2001, “
Early Endosseous Integration Enhanced by Dual Acid Etching of Titanium: A Torque Removal Study in the Rabbit
,”
Clin. Oral Implants Res.
,
12
, pp.
350
357
. 0905-7161
You do not currently have access to this content.