Two main sources of error in inverse dynamics based calculations of net joint torques are inaccuracies in segmental motions and estimates of anthropometric body segment parameters (BSPs). Methods for estimating BSP (i.e., segmental moment of inertia, mass, and center of mass location) have been previously proposed; however, these methods are limited due to low accuracies, cumbersome use, need for expensive medical equipment, and∕or sensitivity of performance. This paper proposes a method for improving the accuracy of calculated net joint torques by optimizing for subject-specific BSP in the presence of characteristic and random errors in motion data measurements. A two-step optimization approach based on solving constrained nonlinear optimization problems was used. This approach minimized the differences between known ground reaction forces (GRFs), such as those measured by a force plate, and the GRF calculated via a top-down inverse dynamics approach. In step 1, a series of short calibration motions was used to compute first approximations of optimized segment motions and BSP for each motion. In step 2, refined optimal BSPs were derived from a combination of these motion profiles. We assessed the efficacy of this approach using a set of reference motions in which the true values for the BSP, segment motion, GRF, and net joint torques were known. To imitate real-world data, we introduced various noise conditions on the true motion and BSP data. We compared the root mean squared errors in calculated net joint torques relative to the true values due to the optimal BSP versus traditionally-derived BSP (from anthropometric tables derived from regression equations) and found that the optimized BSP reduced the error by 77%. These results suggest that errors in calculated net joint torques due to traditionally-derived BSP estimates could be reduced substantially using this optimization approach.

1.
Winter
,
D. A.
, 2005,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
Hoboken, NJ
.
2.
Riemer
,
R.
,
Hsiao-Wecksler
,
E. T.
, and
Zhang
,
X.
, 2008, “
Uncertainties in Inverse Dynamics Solutions: A Comprehensive Analysis and an Application to Gait
,”
Gait and Posture
0966-6362,
27
(
4
), pp.
578
588
.
3.
Leardini
,
A.
,
Chiari
,
L.
,
Croce
,
U. D.
, and
Cappozzo
,
A.
, 2005, “
Human Movement Analysis Using Stereophotogrammetry: Part 3: Soft Tissue Artifact Assessment and Compensation
,”
Gait and Posture
0966-6362,
21
(
2
), pp.
212
225
.
4.
Cappozzo
,
A.
, and
Berme
,
N.
, 1990, Biomechanics of Human Movement Applications in Rehabilitation, Sports and Ergonomics, Worthington, OH, Bertec Corporation, Subject Specific Segment Inertial Parameter Determination: A Survey of Current Methods.
5.
Challis
,
J. H.
, 1996, “
Accuracy of Human Limb Moment of Inertia Estimations and Their Influence on Resultant Joint Moments
,”
J. Appl. Biomech.
1065-8483,
12
(
4
), pp.
517
530
.
6.
Ganley
,
K. J.
, and
Powers
,
C. M.
, 2004, “
Determination of Lower Extremity Anthropometric Parameters Using Dual Energy X-Ray Absorptiometry: The Influence on Net Joint Moments During Gait
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
(
1
), pp.
50
56
.
7.
Kingma
,
I.
,
Toussaint
,
H. M.
,
De Looze
,
M. P.
, and
Van Dieen
,
J. H.
, 1996, “
Segment Inertial Parameter Evaluation in Two Anthropometric Models by Application of a Dynamic Linked Segment Model
,”
J. Biomech.
0021-9290,
29
(
5
), pp.
693
704
.
8.
Dempster
,
W.
, T, 1955, “
Space Requirements of Seated Operator
,” Aerospace Medical Research Laboratories, Technical Report No. WADC-TR-55-159.
9.
De Leva
,
P.
, 1996, “
Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters
,”
J. Biomech.
0021-9290,
29
(
9
), pp.
1223
1230
.
10.
Durkin
,
J. L.
, and
Dowling
,
J. J.
, 2003, “
Analysis of Body Segment Parameter Differences Between Four Human Populations and the Estimation Errors of Four Popular Mathematical Models
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
(4)
), pp.
515
522
.
11.
Zatsiorsky
,
V.
,
Seluyanov
,
V.
, and
Chugunova
,
L. G.
, 1990, “
Contemporary Problems of Biomechanics
,”
Methods of Determining Mass-Inertial Characteristics of Human Body Segments
,
CRC Press
,
Boston
.
12.
Hatze
,
H.
, 1980, “
A Mathematical Model for the Computational Determination of Parameter Values of Anthropomorphic Segments
,”
J. Biomech.
0021-9290,
13
(
10
), pp.
833
843
.
13.
Yeadon
,
M. R.
, 1990, “
The Simulation of Aerial Movement—II. A Mathematical Inertia Model of the Human Body
,”
J. Biomech.
0021-9290,
23
(
1
), pp.
67
74
.
14.
Durkin
,
J. L.
,
James
,
J. D. B.
, and
Andrews
,
D. M.
, 2002, “
The Measurement of Body Segment Inertial Parameters Using Dual Energy X-Ray Absorptiometry
,”
J. Biomech.
0021-9290,
35
(
12
), pp.
1575
1580
.
15.
Zatsiorsky
,
V. M.
, and
Seluyanov
,
V. N.
, 1983, “
The Mass and Inertia Characteristics of the Main Segments of the Human Body
,”
Biomechanics VIII-B
,
Human Kinetics
,
Champaign, IL
.
16.
Kodek
,
T.
, and
Munih
,
M.
, 2006, “
An Identification Technique for Evaluating Body Segment Parameters in the Upper Extremity from Manipulator-Hand Contact Forces and Arm Kinematics
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
21
(
7
), pp.
710
716
.
17.
Vaughan
,
C. L.
,
Andrews
,
J. G.
, and
Hay
,
J. G.
, 1982, “
Selection of Body Segment Parameters by Optimization Methods
,”
ASME J. Biomech. Eng.
0148-0731,
104
(
1
), pp.
38
44
.
18.
Cahouet
,
V.
,
Luc
,
M.
, and
David
,
A.
, 2002, “
Static Optimal Estimation of Joint Accelerations for Inverse Dynamics Problem Solution
,”
J. Biomech.
0021-9290,
35
(
11
), pp.
1507
1513
.
19.
Kuo
,
A. D.
, 1998, “
A Least-Squares Estimation Approach to Improving the Precision of Inverse Dynamics Computations
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
1
), pp.
148
159
20.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
, 2007, “
Opensim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
(
11
), pp.
1940
1950
.
21.
Cappozzo
,
A.
, 2002, “
Minimum Measured-Input Models for the Assessment of Motor Ability
,”
J. Biomech.
0021-9290,
35
(
4
), pp.
437
446
.
22.
Mazza
,
C.
, and
Cappozzo
,
A.
, 2004, “
An Optimization Algorithm for Human Joint Angle Time-History Generation Using External Force Data
,”
Ann. Biomed. Eng.
0090-6964,
32
(
5
), pp.
764
772
.
23.
Cappozzo
,
A.
,
Catani
,
F.
,
Leardini
,
A.
,
Benedetti
,
M. G.
, and
Della Croce
,
U.
, 1996, “
Position and Orientation in Space of Bones During Movement: Experimental Artefacts
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
11
(
2
), pp.
90
100
.
24.
Holden
,
J. P.
,
Orsini
,
J. A.
,
Siegel
,
K. L.
,
Kepple
,
T. M.
,
Gerber
,
L. H.
, and
Stanhope
,
S. J.
, 1997, “
Surface Movement Errors in Shank Kinematics and Knee Kinetics During Gait
,”
Gait and Posture
0966-6362,
5
(
3
), pp.
217
227
.
25.
Stagni
,
R.
,
Fantozzi
,
S.
,
Cappello
,
A.
, and
Leardini
,
A.
, 2005, “
Quantification of Soft Tissue Artefact in Motion Analysis by Combining 3D Fluoroscopy and Stereophotogrammetry: A Study on Two Subjects
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
20
(
3
), pp.
320
329
.
26.
Richards
,
J. G.
, 1999, “
The Measurement of Human Motion: A Comparison of Commercially Available Systems
,”
Hum. Mov. Sci.
0167-9457,
18
(
5
), pp.
589
602
27.
Bell
,
A. L.
,
Pedersen
,
D. R.
, and
Brand
,
R. A.
, 1990, “
A Comparison of the Accuracy of Several Hip Center Location Prediction Methods
,”
J. Biomech.
0021-9290,
23
(
6
), pp.
617
621
.
28.
Leardini
,
A.
,
Cappozzo
,
A.
,
Catani
,
F.
,
Toksvig-Larsen
,
S.
,
Petitto
,
A.
,
Sforza
,
V.
,
Cassanelli
,
G.
, and
Giannini
,
S.
, 1999, “
Validation of a Functional Method for the Estimation of Hip Joint Centre Location
,”
J. Biomech.
0021-9290,
32
(
1
), pp.
99
103
.
29.
Roux
,
E.
,
Bouilland
,
S.
,
Godillon-Maquinghen
,
A. P.
, and
Bouttens
,
D.
, 2002, “
Evaluation of the Global Optimisation Method Within the Upper Limb Kinematics Analysis
,”
J. Biomech.
0021-9290,
35
(
9
), pp.
1279
1283
.
30.
Schwartz
,
M. H.
, and
Rozumalski
,
A.
, 2005, “
A New Method for Estimating Joint Parameters From Motion Data
,”
J. Biomech.
0021-9290,
38
(
1
), pp.
107
116
.
31.
Riemer
,
R.
, and
Hsiao-Wecksler
,
E. T.
, 2008, “
Optimization-Based Inverse Dynamics to Reduce the Effect of Motion Errors in Joint Torque Calculations
,”
J. Biomech.
0021-9290,
41
(
7
), pp.
1503
1509
.
32.
Chaffin
,
B. D.
,
Gunnar
,
B. J. A.
, and
Martin
,
B.
, 1999,
Occupational Biomechanics
,
Wiley
,
New York
.
33.
Cheze
,
L.
,
Fregly
,
B. J.
, and
Dimnet
,
J.
, 1995, “
A Solidification Procedure to Facilitate Kinematic Analyses Based on Video System Data
,”
J. Biomech.
0021-9290,
28
(
7
), pp.
879
884
.
34.
Lu
,
T. W.
, and
O’Connor
,
J. J.
, 1999, “
Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimisation With Joint Constraints
,”
J. Biomech.
0021-9290,
32
(
2
), pp.
129
134
.
35.
Reinbolt
,
J. A.
,
Schutte
,
J. F.
,
Fregly
,
B. J.
,
Koh
,
B. I.
,
Haftka
,
R. T.
,
George
,
A. D.
, and
Mitchell
,
K. H.
, 2005, “
Determination of Patient-Specific Multi-Joint Kinematic Models Through Two-Level Optimization
,”
J. Biomech.
0021-9290,
38
(
3
), pp.
621
626
.
36.
Block
,
D. J.
, and
Spong
,
M. W.
, 1995,
Mechanical Design and Control of the Pendubot
,
Peoria
,
IL
, pp.
1
4
.
37.
Gruber
,
K.
,
Denoth
,
J.
,
Stuessi
,
E.
, and
Ruder
,
H.
, 1987, “
The Wobbling Mass Model
,”
Biomechanics X-B
,
B.
Jonsson
, ed.,
Human Kinetics
,
Champaign, IL
.
38.
Saunders
,
M. A.
, 2008 private communication.
39.
Alexander
,
E. J.
, and
Andriacchi
,
T. P.
, 2001, “
Correcting for Deformation in Skin-Based Marker Systems
,”
J. Biomech.
0021-9290,
34
(
3
), pp.
355
361
.
You do not currently have access to this content.