Inverse dynamics is a standard approach for estimating joint loadings in the lower extremity from kinematic and ground reaction data for use in clinical and research gait studies. Variability in estimating body segment parameters and uncertainty in defining anatomical landmarks have the potential to impact predicted joint loading. This study demonstrates the application of efficient probabilistic methods to quantify the effect of uncertainty in these parameters and landmarks on joint loading in an inverse-dynamics model, and identifies the relative importance of the parameters and landmarks to the predicted joint loading. The inverse-dynamics analysis used a benchmark data set of lower-extremity kinematics and ground reaction data during the stance phase of gait to predict the three-dimensional intersegmental forces and moments. The probabilistic analysis predicted the 1–99 percentile ranges of intersegmental forces and moments at the hip, knee, and ankle. Variabilities, in forces and moments of up to 56% and 156% of the mean values were predicted based on coefficients of variation less than 0.20 for the body segment parameters and standard deviations of 2mm for the anatomical landmarks. Sensitivity factors identified the important parameters for the specific joint and component directions. Anatomical landmarks affected moments to a larger extent than body segment parameters. Additionally, for forces, anatomical landmarks had a larger effect than body segment parameters, with the exception of segment masses, which were important to the proximal-distal joint forces. The probabilistic modeling approach predicted the range of possible joint loading, which has implications in gait studies, clinical assessments, and implant design evaluations.

1.
Lu
,
T. W.
,
O’Conor
,
J. J.
,
Taylor
,
S. J. G.
, and
Walker
,
P. S.
, 1998, “
Validation of a Lower Limb Model With in Vivo Femoral Forces Telemetered From Two Subjects
,”
J. Biomech.
0021-9290,
31
, pp.
63
69
.
2.
Heller
,
M. O.
,
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Durselen
,
L.
,
Pohl
,
M.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
, 2001, “
Musculo-Skeletal Loading Conditions at the Hip During Walking and Stair Climbing
,”
J. Biomech.
0021-9290,
34
, pp.
883
893
.
3.
Mundermann
,
A.
,
Dyrby
,
C. O.
, and
Andriacchi
,
T. P.
, 2005, “
Secondary Gait Changes in Patients With Medial Compartment Knee Osteoarthritis: Increased Load at the Ankle, Knee and Hip During Walking
,”
Arthritis Rheum.
0004-3591,
52
(
9
), pp.
2835
2844
.
4.
Besier
,
T. F.
,
Sturnieks
,
D. L.
,
Alderson
,
J. A.
, and
Lloyd
,
D. G.
, 2003, “
Repeatability of Gait Data Using a Functional Hip Joint Centre and a Mean Helical Axis
,”
J. Biomech.
0021-9290,
36
, pp.
1159
1168
.
5.
Fantozzi
,
S.
,
Stagni
,
R.
,
Cappello
,
A.
, and
Leardini
,
A.
, 2005, “
Effect of Different Inertial Parameter Sets on Joint Moment Calculation During Stair Ascending and Descending
,”
Med. Eng. Phys.
1350-4533,
27
, pp.
537
541
.
6.
Rao
,
G.
,
Amarantini
,
D.
,
Berton
,
E.
, and
Favier
,
D.
, 2006, “
Influence of Body Segments’ Parameters Estimation Models on Inverse Dynamics Solutions During Gait
,”
J. Biomech.
0021-9290,
39
, pp.
1531
1536
.
7.
Ganley
,
K. J.
, and
Powers
,
C. M.
, 2004, “
Determination of Lower Extremity Anthropometric Parameters Using Dual Energy X-Ray Absorptiometry: The Influence on Net Joint Moments During Gait
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
, pp.
50
56
.
8.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
, 2003, “
Biomechanics and Muscle Coordination of Human Walking Part II: Lessons From Dynamical Simulations and Clinical Implications
,”
Gait and Posture
0966-6362,
17
, pp.
1
17
.
9.
Nagano
,
A.
,
Gerritsen
,
K. G. M.
, and
Fukashiro
,
S.
, 2000, “
A Sensitivity Analysis of the Calculation of Mechanical Output Through Inverse Dynamics: A Computer Simulation Study
,”
J. Biomech.
0021-9290,
33
, pp.
1313
1318
.
10.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
136
144
.
11.
Della Croce
,
U.
,
Cappozzo
,
A.
, and
Kerrigan
,
D. C.
, 1999, “
Pelvis and Lower Limb Anatomical Landmark Calibration Precision and Its Propogation to Bone Geometry and Joint Angles
,”
Med. Biol. Eng. Comput.
0140-0118,
37
, pp.
155
161
.
12.
de Groot
,
J. H.
, 1997, “
The Variability of Shoulder Motions Recorded by Means of Palpation
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
12
(
7∕8
), pp.
461
472
.
13.
Della Croce
,
U.
,
Camomilla
,
V.
,
Leardini
,
A.
, and
Cappozzo
,
A.
, 2003, “
Femoral Anatomical Frame: Assessment of Various Definitions
,”
Med. Eng. Phys.
1350-4533,
25
, pp.
425
431
.
14.
Lerner
,
A. L.
,
Tamez-Pena
,
J. G.
,
Houck
,
J. R.
,
Yao
,
J.
,
Harmon
,
H. L.
,
Salo
,
A. D.
, and
Totterman
,
S. M. S.
, 2003, “
The Use of Sequential MR Image Sets for Determining Tibiofemoral Motion: Reliability of Coordinate Systems and Accuracy of Motion Tracking Algorithm
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
246
253
.
15.
Holden
,
J. P.
, and
Stanhope
,
S. J.
, 1998, “
The Effect of Variation in Knee Center Location Estimates on Net Knee Joint Moments
,”
Gait and Posture
0966-6362,
7
, pp.
1
6
.
16.
McCaw
,
S. T.
, and
DeVita
,
P.
, 1995, “
Errors in Alignment of Center of Pressure and Foot Coordinates Affect Predicted Lower Extremity Torques
,”
J. Biomech.
0021-9290,
28
, pp.
985
988
.
17.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
, 2007, “
Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait?
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
, pp.
782
793
.
18.
Vaughan
,
C. L.
,
Davis
,
B. L.
, and
O’Connor
,
J. C.
, 1999, “
Integration of Anthropometry, Displacements, and Ground Reaction Forces
,”
Dynamics of Human Gait
,
Human Kinetics
,
Champaign, IL
, pp.
15
131
.
19.
Robinson
,
M.
,
Eckhoff
,
D. G.
,
Reinig
,
K. D.
,
Bagur
,
M. M.
, and
Bach
,
J. M.
, 2006, “
Variability of Landmark Identification in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
442
, pp.
57
62
.
20.
Wu
,
Y.-T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
, 1990, “
Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions
,”
AIAA J.
0001-1452,
28
(
9
), pp.
1663
1669
.
21.
Stagni
,
R.
,
Leardini
,
A.
,
Cappozzo
,
A.
,
Benedetti
,
M. G.
, and
Cappello
,
A.
, 2000, “
Effects of Hip Joint Centre Mislocation on Gait Analysis Results
,”
J. Biomech.
0021-9290,
33
, pp.
1479
1487
.
22.
Laz
,
P. J.
,
Pal
,
S.
,
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2006, “
Probabilistic Finite Element Prediction of Knee Wear Simulator Mechanics
,”
J. Biomech.
0021-9290,
39
, pp.
2303
2310
.
You do not currently have access to this content.