A viscoelastic nanoindentation technique was developed to measure both in-plane and through-thickness viscoelastic properties of human tympanic membrane (TM). For measurement of in-plane Young’s relaxation modulus, the TM sample was clamped on a circular hole and a nanoindenter tip was used to apply a concentrated force at the center of the TM sample. In this setup, the resistance to nanoindentation displacement can be considered due primarily to the in-plane stiffness. The load-displacement curve obtained was used along with finite element analysis to determine the in-plane viscoelastic properties of TM. For measurements of Young’s relaxation modulus in the through-thickness (out-of-plane) direction, the TM sample was placed on a relatively rigid solid substrate and nanoindentation was made on the sample surface. In this latter setup, the resistance to nanoindentation displacement arises primarily due to out-of-plane stiffness. The load-displacement curve obtained in this manner was used to determine the out-of-plane relaxation modulus using the method appropriate for viscoelastic materials. From our sample tests, we obtained the steady-state values for in-plane moduli as ∼17.4 MPa and ∼19.0 MPa for posterior and anterior portions of TM samples, respectively, and the value for through-thickness modulus as ∼6.0 MPa for both posterior and anterior TM samples. Using this technique, the local out-of-plane viscoelastic modulus can be determined for different locations over the entire TM, and the in-plane properties can be determined for different quadrants of the TM.

1.
Gan
,
R. Z.
,
Feng
,
B.
, and
Sun
,
Q.
, 2004, “
Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
847
859
.
2.
Gan
,
R. Z
,
Sun
,
Q.
,
Feng
,
B.
, and
Wood
,
M. W.
, 2006, “
Acoustic-Structural Coupled Finite Element Analysis for Sound Transmission in Human Ear-Pressure Distributions
,”
Med. Eng. Phys.
1350-4533,
28
, pp.
395
404
.
3.
von Békésy
,
G.
, 1960,
Experiments in Hearing
,
McGraw-Hill
,
New York
.
4.
Kirikae
,
I.
, 1960,
The Structure and Function of the Middle Ear
,
University of Tokyo Press
,
Tokyo
.
5.
Decraemer
,
W. F.
,
Maes
,
M. A.
, and
Vanhuyse
,
V. J.
, 1980, “
An Elastic Stress-Strain Relation for Soft Biological Tissues Based on a Structural Model
,”
J. Biomech.
0021-9290,
13
, pp.
463
468
.
6.
Von Unge
,
Decraemer
,
W. F.
,
Bagger-Sjöbäck
,
D.
, and
Dirckx
,
J. J.
, 1993, “
Displacement of the Gerbil Tympanic Membrane Under Static Pressure Variations Measured With a Real-Time Differential Moire Interferometer
,”
Hear. Res.
0378-5955,
70
, pp.
229
242
.
7.
Lim
,
D. J.
, 1995, “
Structure and Function of the Tympanic Membrane: A Review
,”
Acta Otorhinolaryngol. Belg.
0001-6497,
49
, pp.
101
115
.
8.
Fay
,
J.
,
Puria
,
S.
,
Decraemer
,
W. F.
, and
Steele
,
C.
, 2005, “
Three Approaches for Estimating the Elastic Modulus of the Tympanic Membrane
,”
J. Biomech.
0021-9290,
38
, pp.
1807
1815
.
9.
Pethica
,
J. B.
,
Hutchings
,
R.
, and
Oliver
,
W. C.
, 1983, “
Hardness Measurement at Penetration Displacements as Small as 20nm
,”
Philos. Mag. A
0141-8610,
48
, pp.
593
606
.
10.
Oliver
,
W. C.
,
Hutchings
,
R.
, and
Pethica
,
J. B.
, 1986, “
Measurement of Hardness at Indentation Displacements as Low as 20nm
,”
Microindentation Techniques in Materials Science and Engineering
,
American Society for Testing and Materials
,
Philadelphia
, ASTM STP, 889, pp.
90
108
.
11.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
, pp.
1564
1583
.
12.
Liu
,
Y.
,
Wang
,
B.
,
Yoshino
,
M.
,
Roy
,
S.
,
Lu
,
H.
, and
Komanduri
,
R.
, 2005, “
Combined Numerical Simulation and Nanoindentation for Determining Mechanical Properties of Single Crystal Copper at Mesoscale
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
2718
2741
.
13.
Cheng
,
L.
,
Xia
,
X.
,
Yu
,
W.
,
Scriven
,
L. E.
, and
Gerberich
,
W. W.
, 2000, “
Flat-Punch Indentation of Viscoelastic Material
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
38
, pp.
10
22
.
14.
Lu
,
H.
,
Wang
,
B.
,
Ma
,
J.
,
Huang
,
G.
, and
Viswanathan
,
H.
, 2003, “
Measurement of Creep Compliance of Solid Polymers by Nanoindentation
,”
Mech. Time-Depend. Mater.
1385-2000,
7
, pp.
189
207
.
15.
Huang
,
G.
,
Wang
,
B.
, and
Lu
,
H.
, 2004, “
Measurements of Viscoelastic Functions in Frequency-Domain by Nanoindentation
,”
Mech. Time-Depend. Mater.
1385-2000,
8
, pp.
345
364
.
16.
Huang
,
G.
, and
Lu
,
H.
, 2007, “
Measurements of Two Independent Viscoelastic Functions by Nanoindentation
,”
Exp. Mech.
0014-4851,
47
, pp.
87
98
.
17.
Huang
,
G.
, and
Lu
,
H.
, 2006, “
Measurement of Young’s Relaxation Modulus Using Nanoindentation
,”
Mech. Time-Depend. Mater.
1385-2000,
10
, pp.
229
243
.
18.
Lu
,
H.
,
Huang
,
G.
,
Wang
,
B.
,
Mamedov
,
A.
, and
Gupta
,
S.
, 2006, “
Characterization of the Linear Viscoelastic Behavior of Single-Wall Carbon Nanotube/Polyelectrolyte Multilayer Nanocomposite Film Using Nanoindentation
,”
Thin Solid Films
0040-6090,
500
, pp.
197
202
.
You do not currently have access to this content.