During prosthetic gait initiation, transfemoral (TF) amputees control the spatial and temporal parameters that modulate the propulsive forces, the positions of the center of pressure (CoP), and the center of mass (CoM). Whether their sound leg or the prosthetic leg is leading, the TF amputees reach the same end velocity. We wondered how the CoM velocity build up is influenced by the differences in propulsive components in the legs and how the trajectory of the CoP differs from the CoP trajectory in able bodied (AB) subjects. Seven TF subjects and eight AB subjects were tested on a force plate and on an long walkway. On the force plate, they initiated gait two times with their sound leg and two times with their prosthetic leg. Force measurement data were used to calculate the CoM velocity curves in horizontal and vertical directions. Gait initiated on the walkway was used to determine the leg preference. We hypothesized that because of the differences in propulsive components, the motions of the CoP and the CoM have to be different, as ankle muscles are used to help generate horizontal ground reaction force components. Also, due to the absence of an active ankle function in the prosthetic leg, the vertical CoM velocity during gait initiation may be different when leading with the prosthetic leg compared to when leading with the sound leg. The data showed that whether the TF subjects initiated a gait with their prosthetic leg or with their sound leg, their horizontal end velocity was equal. The subjects compensated the loss of propulsive force under the prosthesis with the sound leg, both when the prosthetic leg was leading and when the sound leg was leading. In the vertical CoM velocity, a tendency for differences between the two conditions was found. When initiating gait with the sound leg, the downward vertical CoM velocity at the end of the gait initiation was higher compared to when leading with the prosthetic leg. Our subjects used a gait initiation strategy that depended mainly on the active ankle function of the sound leg; therefore, they changed the relative durations of the gait initiation anticipatory postural adjustment phase and the step execution phase. Both legs were controlled in one single system of gait propulsion. The shape of the CoP trajectories, the applied forces, and the CoM velocity curves are described in this paper.
Skip Nav Destination
Article navigation
February 2008
Research Papers
Controlling Propulsive Forces in Gait Initiation in Transfemoral Amputees
Helco G. van Keeken,
Helco G. van Keeken
Center for Human Movement Sciences,
University of Groningen
, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
Search for other works by this author on:
Aline H. Vrieling,
Aline H. Vrieling
Center for Rehabilitation, University Medical Center Groningen,
University of Groningen
, P.O. Box 30001, 9700 RB Groningen, The Netherlands
Search for other works by this author on:
At L. Hof,
At L. Hof
Center for Human Movement Sciences, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; Center for Rehabilitation, University Medical Center Groningen,
University of Groningen
, P.O. Box 30001, 9700 RB Groningen, The Netherlands
Search for other works by this author on:
Jan P. K. Halbertsma,
Jan P. K. Halbertsma
Center for Rehabilitation, University Medical Center Groningen,
University of Groningen
, P.O. Box 30001, 9700 RB Groningen, The Netherlands
Search for other works by this author on:
Tanneke Schoppen,
Tanneke Schoppen
Center for Rehabilitation, University Medical Center Groningen,
University of Groningen
, P.O. Box 30001, 9700 RB Groningen, The Netherlands
Search for other works by this author on:
Klaas Postema,
Klaas Postema
Center for Rehabilitation, University Medical Center Groningen,
University of Groningen
, P.O. Box 30001, 9700 RB Groningen, The Netherlands
Search for other works by this author on:
Bert Otten
Bert Otten
Center for Human Movement Sciences,
University of Groningen
, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
Search for other works by this author on:
Helco G. van Keeken
Center for Human Movement Sciences,
University of Groningen
, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
Aline H. Vrieling
Center for Rehabilitation, University Medical Center Groningen,
University of Groningen
, P.O. Box 30001, 9700 RB Groningen, The Netherlands
At L. Hof
Center for Human Movement Sciences, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; Center for Rehabilitation, University Medical Center Groningen,
University of Groningen
, P.O. Box 30001, 9700 RB Groningen, The Netherlands
Jan P. K. Halbertsma
Center for Rehabilitation, University Medical Center Groningen,
University of Groningen
, P.O. Box 30001, 9700 RB Groningen, The Netherlands
Tanneke Schoppen
Center for Rehabilitation, University Medical Center Groningen,
University of Groningen
, P.O. Box 30001, 9700 RB Groningen, The Netherlands
Klaas Postema
Center for Rehabilitation, University Medical Center Groningen,
University of Groningen
, P.O. Box 30001, 9700 RB Groningen, The Netherlands
Bert Otten
Center for Human Movement Sciences,
University of Groningen
, A. Deusinglaan 1, 9713 AV Groningen, The NetherlandsJ Biomech Eng. Feb 2008, 130(1): 011002 (9 pages)
Published Online: February 5, 2008
Article history
Received:
June 29, 2006
Revised:
May 30, 2007
Published:
February 5, 2008
Citation
van Keeken, H. G., Vrieling, A. H., Hof, A. L., Halbertsma, J. P. K., Schoppen, T., Postema, K., and Otten, B. (February 5, 2008). "Controlling Propulsive Forces in Gait Initiation in Transfemoral Amputees." ASME. J Biomech Eng. February 2008; 130(1): 011002. https://doi.org/10.1115/1.2838028
Download citation file:
Get Email Alerts
Simultaneous Prediction of Multiple Unmeasured Muscle Activations Through Synergy Extrapolation
J Biomech Eng (March 2025)
Related Articles
Intelligent Motor Powered Prosthetic Knee Joint
J. Med. Devices (June,2011)
Design and Performance of Plastic Modular Adaptors for External Transtibial Prostheses
J. Med. Devices (June,2010)
Low-Cost Kit of Plastic Modular Adaptors for External Transtibial Prostheses
J. Med. Devices (March,2011)
Human Joint Simulation Using LifeMOD Co-Simulation
J. Med. Devices (June,2008)
Related Proceedings Papers
Related Chapters
Utility Function Fundamentals
Decision Making in Engineering Design
Preference Modeling in Engineering Design
Decision Making in Engineering Design
Multi-Attribute Utility Analysis of Conflicting Preferences
Decision Making in Engineering Design