Knowledge of the coupled motions, which develop under compressive loading of the knee, is useful to determine which degrees of freedom should be included in the study of tibiofemoral contact and also to understand the role of the anterior cruciate ligament (ACL) in coupled motions. The objectives of this study were to measure the coupled motions of the intact knee and ACL-deficient knee under compression and to compare the coupled motions of the ACL-deficient knee with those of the intact knee. Ten intact cadaveric knees were tested by applying a 1600N compressive load and measuring coupled internal-external and varus-valgus rotations and anterior-posterior and medial-lateral translations at 0deg, 15deg, and 30deg of flexion. Compressive loads were applied along the functional axis of axial rotation, which coincides approximately with the mechanical axis of the tibia. The ACL was excised and the knees were tested again. In the intact knee, the peak coupled motions were 3.8deg internal rotation at 0deg flexion changing to 4.9deg external rotation at 30deg of flexion, 1.4deg of varus rotation at 0deg flexion changing to 1.9deg valgus rotation at 30deg of flexion, 1.4mm of medial translation at 0deg flexion increasing to 2.3mm at 30deg of flexion, and 5.3mm of anterior translation at 0deg flexion increasing to 10.2mm at 30deg of flexion. All changes in the peak coupled motions from 0degto30deg flexion were statistically significant (p<0.05). In ACL-deficient knees, there was a strong trend (marginally not significant, p=0.07) toward greater anterior translation (12.7mm) than that in intact knees (8.0mm), whereas coupled motions in the other degrees of freedom were comparable. Because the coupled motions in all four degrees of freedom in the intact knee and ACL-deficient knee are sufficiently large to substantially affect the tibiofemoral contact area, all degrees of freedom should be included when either developing mathematical models or designing mechanical testing equipment for study of tibiofemoral contact. The increase in coupled anterior translation in ACL-deficient knees indicates the important role played by the ACL in constraining anterior translation during compressive loading.

1.
Arthritis Foundation Website
, 2006, www.arthritisfoundation.orgwww.arthritisfoundation.org.
2.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
, 2000, “
Joint Contact Mechanics in the Early Stages of Osteoarthritis
,”
Med. Eng. Phys.
1350-4533,
22
, pp.
1
12
.
3.
Perie
,
D.
, and
Hobatho
,
M. C.
, 1998, “
In Vivo Determination of Contact Areas and Pressure of the Femorotibial Joint Using Non-Linear Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
13
, pp.
394
402
.
4.
Bendjaballah
,
M. Z.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
, 1995, “
Biomechanics of the Human Knee Joint in Compression: Reconstruction, Mesh Generation and Finite Element Analysis
,”
The Knee
0968-0160,
2
, pp.
69
79
.
5.
Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
, 2002, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
273
280
.
6.
Paletta
,
G. A.
, Jr.
,
Manning
,
T.
,
Snell
,
E.
,
Parker
,
R.
, and
Bergfeld
,
J.
, 1997, “
The Effect of Allograft Meniscal Replacement on Intraarticular Contact Area and Pressures in the Human Knee. A Biomechanical Study
,”
Am. J. Sports Med.
0363-5465,
25
, pp.
692
698
.
7.
Chen
,
M. I.
,
Branch
,
T. P.
, and
Hutton
,
W. C.
, 1996, “
Is It Important to Secure the Horns During Lateral Meniscal Transplantation? A Cadaveric Study
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
12
, pp.
174
181
.
8.
Alhalki
,
M. M.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 1999, “
How Three Methods for Fixing a Medial Meniscal Autograft Affect Tibial Contact Mechanics
,”
Am. J. Sports Med.
0363-5465,
27
, pp.
320
328
.
9.
Bendjaballah
,
M. Z.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
, 1997, “
Finite Element Analysis of Human Knee Joint in Varus-Valgus
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
12
, pp.
139
148
.
10.
Wilson
,
D. R.
,
Feikes
,
J. D.
,
Zavatsky
,
A. B.
, and
O’Connor
,
J. J.
, 2000, “
The Components of Passive Knee Movement Are Coupled to Flexion Angle
,”
J. Biomech.
0021-9290,
33
, pp.
465
473
.
11.
Allen
,
C. R.
,
Wong
,
E. K.
,
Livesay
,
G. A.
,
Sakane
,
M.
,
Fu
,
F. H.
, and
Woo
,
S. L.
, 2000, “
Importance of the Medial Meniscus in the Anterior Cruciate Ligament-Deficient Knee
,”
J. Orthop. Res.
0736-0266,
18
, pp.
109
115
.
12.
Andriacchi
,
T. P.
,
Mikosz
,
R. P.
,
Hampton
,
S. J.
, and
Galante
,
J. O.
, 1983, “
Model Studies of the Stiffness Characteristics of the Human Knee Joint
,”
J. Biomech.
0021-9290,
16
, pp.
23
29
.
13.
Hollis
,
J. M.
,
Takai
,
S.
,
Adams
,
D. J.
,
Horibe
,
S.
, and
Woo
,
S. L.
, 1991, “
The Effects of Knee Motion and External Loading on the Length of the Anterior Cruciate Ligament (ACL): A Kinematic Study
,”
ASME J. Biomech. Eng.
0148-0731,
113
, pp.
208
214
.
14.
Levy
,
I. M.
,
Torzilli
,
P. A.
, and
Warren
,
R. F.
, 1982, “
The Effect of Medial Meniscectomy on Anterior-Posterior Motion of the Knee
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
64
, pp.
883
888
.
15.
Logan
,
M. C.
,
Williams
,
A.
,
Lavelle
,
J.
,
Gedroyc
,
W.
, and
Freeman
,
M.
, 2004, “
What Really Happens During the Lachman Test? A Dynamic MRI Analysis of Tibiofemoral Motion
,”
Am. J. Sports Med.
0363-5465,
32
, pp.
369
375
.
16.
Logan
,
M.
,
Dunstan
,
E.
,
Robinson
,
J.
,
Williams
,
A.
,
Gedroyc
,
W.
, and
Freeman
,
M.
, 2004, “
Tibiofemoral Kinematics of the Anterior Cruciate Ligament (ACL)-Deficient Weightbearing, Living Knee Employing Vertical Access Open ‘Interventional' Multiple Resonance Imaging
,”
Am. J. Sports Med.
0363-5465,
32
, pp.
720
726
.
17.
Scarvell
,
J. M.
,
Smith
,
P. N.
,
Refshauge
,
K. M.
,
Galloway
,
H.
, and
Woods
,
K.
, 2005, “
Comparison of Kinematics in the Healthy and ACL Injured Knee Using MRI
,”
J. Biomech.
0021-9290,
38
, pp.
255
262
.
18.
Zhang
,
L. Q.
,
Shiavi
,
R. G.
,
Limbird
,
T. J.
, and
Minorik
,
J. M.
, 2003, “
Six Degrees-of-Freedom Kinematics of ACL Deficient Knees During Locomotion-Compensatory Mechanism
,”
Gait and Posture
0966-6362,
17
, pp.
34
42
.
19.
Andriacchi
,
T. P.
, and
Dyrby
,
C. O.
, 2005, “
Interactions between Kinematics and Loading During Walking for the Normal and ACL Deficient Knee
,”
J. Biomech.
0021-9290,
38
, pp.
293
298
.
20.
Clatworthy
,
M.
, and
Amendola
,
A.
, 1999, “
The Anterior Cruciate Ligament and Arthritis
,”
Clin. Sports Med.
0278-5919,
18
, pp.
173
198
.
21.
Bach
,
J. M.
, and
Hull
,
M. L.
, 1995, “
A New Load Application System for In Vitro Study of Ligamentous Injuries to the Human Knee Joint
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
373
382
.
22.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
136
144
.
23.
Berns
,
G. S.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
, 1990, “
Implementation of a Five Degree-of-Freedom Automated System to Determine Knee Flexibility In Vitro
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
392
400
.
24.
Martens
,
T. A.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 1997, “
An In Vitro Osteotomy Method to Expose the Medial Compartment of the Human Knee
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
379
385
.
25.
Komistek
,
R. D.
,
Kane
,
T. R.
,
Mahfouz
,
M.
,
Ochoa
,
J. A.
, and
Dennis
,
D. A.
, 2005, “
Knee Mechanics: A Review of Past and Present Techniques to Determine In Vivo Loads
,”
J. Biomech.
0021-9290,
38
, pp.
215
228
.
26.
Shino
,
K.
,
Inoue
,
M.
,
Horibe
,
S.
,
Nakamura
,
H.
, and
Ono
,
K.
, 1987, “
Measurement of Anterior Instability of the Knee. A New Apparatus for Clinical Testing
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
69
, pp.
608
613
.
27.
Amis
,
A. A.
, 1989, “
Anterior Cruciate Ligament Replacement. Knee Stability and the Effects of Implants
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
71
, pp.
819
824
.
28.
Kettelkamp
,
D. B.
, and
Jacobs
,
A. W.
, 1972, “
Tibiofemoral Contact Area—Determination and Implications
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
54
, pp.
349
356
.
29.
Hill
,
P. F.
,
Vedi
,
V.
,
Williams
,
A.
,
Iwaki
,
H.
,
Pinskerova
,
V.
, and
Freeman
,
M. A.
, 2000, “
Tibiofemoral Movement 2: The Loaded and Unloaded Living Knee Studied by MRI
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
82
, pp.
1196
1198
.
30.
Iwaki
,
H.
,
Pinskerova
,
V.
, and
Freeman
,
M. A.
, 2000, “
Tibiofemoral Movement 1: The Shapes and Relative Movements of the Femur and Tibia in the Unloaded Cadaver Knee
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
82
, pp.
1189
1195
.
31.
McPherson
,
A.
,
Karrholm
,
J.
,
Pinskerova
,
V.
,
Sosna
,
A.
, and
Martelli
,
S.
, 2005, “
Imaging Knee Position Using MRI, RSA/CT and 3d Digitization
,”
J. Biomech.
0021-9290,
38
, pp.
263
268
.
32.
Kurosawa
,
H.
,
Walker
,
P. S.
,
Abe
,
S.
,
Garg
,
A.
, and
Hunter
,
T.
, 1985, “
Geometry and Motion of the Knee for Implant and Orthotic Design
,”
J. Biomech.
0021-9290,
18
, pp.
487
499
.
33.
Neu
,
C. P.
,
Hull
,
M. L.
,
Walton
,
J. H.
, and
Buonocore
,
M. H.
, 2005, “
MRI-Based Technique for Determining Nonuniform Deformations Throughout the Volume of Articular Cartilage Explants
,”
Magn. Reson. Med.
0740-3194,
53
, pp.
321
328
.
34.
Markolf
,
K. L.
,
Burchfield
,
D. M.
,
Shapiro
,
M. M.
,
Davis
,
B. R.
,
Finerman
,
G. A.
, and
Slauterbeck
,
J. L.
, 1996, “
Biomechanical Consequences of Replacement of the Anterior Cruciate Ligament With a Patellar Ligament Allograft. Part I: Insertion of the Graft and Anterior-Posterior Testing
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
78
, pp.
1720
1727
.
35.
Amis
,
A. A.
, and
Dawkins
,
G. P.
, 1991, “
Functional Anatomy of the Anterior Cruciate Ligament. Fibre Bundle Actions Related to Ligament Replacements and Injuries
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
73
, pp.
260
267
.
36.
Wascher
,
D. C.
,
Markolf
,
K. L.
,
Shapiro
,
M. S.
, and
Finerman
,
G. A.
, 1993, “
Direct In Vitro Measurement of Forces in the Cruciate Ligaments. Part I: The Effect of Multiplane Loading in the Intact Knee
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
75
, pp.
377
386
.
37.
Wang
,
C. J.
, and
Walker
,
P. S.
, 1974, “
Rotatory Laxity of the Human Knee Joint
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
56
, pp.
161
170
.
38.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
, 1988, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
0021-9290,
21
, pp.
705
720
.
39.
Markolf
,
K. L.
,
Mensch
,
J. S.
, and
Amstutz
,
H. C.
, 1976, “
Stiffness and Laxity of the Knee—The Contributions of the Supporting Structures. A Quantitative In Vitro Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
58
, pp.
583
594
.
40.
Kvist
,
J.
, and
Gillquist
,
J.
, 2001, “
Anterior Positioning of Tibia During Motion After Anterior Cruciate Ligament Injury
,”
Med. Sci. Sports Exercise
0195-9131,
33
, pp.
1063
1072
.
You do not currently have access to this content.