The dispersion of a solute bolus is calculated for cerebrospinal fluid undergoing oscillatory flow in the subarachnoid space of the spine. The fine structure of the subarachnoid space (nerves and trabeculae) enhances both longitudinal and transverse dispersions five to ten times over a simple model with an open annular space. Overall, dispersion is >103 times simple molecular diffusion. The result of enhanced dispersion is rapid spread and dilution of the bolus, effectively stirred by fluid movement around the fine structure.

1.
Loth
,
F.
,
Yardimci
,
M. A.
, and
Alperin
,
N.
, 2001, “
Hydrodynamic Modeling of Cerebrospinal Fluid Motion Within the Spinal Cavity
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
71
79
.
2.
Stockman
,
H. W.
, 2006, “
Effect of Anatomical Fine Structure on the Flow of Cerebrospinal Fluid in the Spinal Subarachnoid Space
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
106
114
.
3.
Myers
,
M. R.
, 1996, “
A Numerical Investigation into Factors Affecting Anesthetic Distribution During Spinal Anesthesia
,”
J. Biomech.
0021-9290,
29
(
2
), pp.
139
149
.
4.
Siegel
,
P.
,
Mosé
,
R.
,
Ackerer
,
Ph.
, and
Jaffré
,
J.
, 1997, “
Solution of the Advection-Diffusion Equation Using a Combination of Discontinuous and Mixed Finite Elements
,”
Int. J. Numer. Methods Fluids
0271-2091,
24
, pp.
595
613
.
5.
Martys
,
N.
, and
Chen
,
H.
, 1996, “
Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method
,”
Phys. Rev. E
1063-651X,
53
, pp.
743
750
.
6.
Qian
,
Y. H.
,
d’Humières
,
D.
, and
Lallemand
,
P.
, 1992, “
Lattice BGK Models for Navier-Stokes Equation
,”
Europhys. Lett.
0295-5075,
17
(
6
), pp.
479
484
.
7.
Stockman
,
H. W.
, 1999, “
A 3D Lattice Boltzmann Code for Modeling Flow and Multi-Component Dispersion
,”
Sandia National Laboratories
, Report No. SAND99–0162.
8.
Stockman
,
H. W.
,
Glass
,
R. J.
,
Cooper
,
C.
, and
Rajaram
,
H.
, 1998, “
Accuracy and Computational Efficiency in 3D Dispersion Via Lattice Boltzmann: Models for Dispersion in Rough Fractures and Double-Diffusive Fingering
,”
Int. J. Mod. Phys. C
0129-1831,
9
(
8
), pp.
1545
1557
.
9.
Porter
,
B.
,
Zauel
,
R.
,
Stockman
,
H.
,
Guldberg
,
R.
, and
Fyhrie
,
D.
, 2004, “
3-D Computational Modeling of Media Flow Through Scaffolds in a Perfusion Bioreactor
,”
J. Biomech.
0021-9290,
38
(
1
), pp.
543
549
.
10.
Stockman
,
H. W.
,
Johnson
,
J. P.
, and
Brown
,
S. R.
, 2001, “
Mixing at Fracture Intersections: Influence of Channel Geometry and the Reynolds and Peclet Numbers
,”
Geophys. Res. Lett.
0094-8276,
28
(
22
), pp.
4299
4302
.
11.
Flekkøy
,
E. G.
, 1993, “
Lattice Bhatnagar-Gross-Krook Models for Miscible Fluids
,”
Phys. Rev. E
1063-651X,
47
(
6
), pp.
4247
4257
.
12.
Aris
,
R.
, 1956, “
On the Dispersion of a Solute in a Fluid Flowing Through a Tube
,”
Proc. R. Soc. London, Ser. A
1364-5021,
235
, pp.
67
77
.
13.
Stepp
,
D. W.
,
Nishikawa
,
Y.
, and
Chilian
,
W. M.
, 1999, “
Regulation of Shear Stress in the Canine Coronary Microcirculation
,”
Circulation
0009-7322,
100
(
14
), pp.
1555
1561
.
14.
Zacharia
,
I. G.
, and
Deen
,
W. M.
, 2005, “
Diffusivity and Solubility of Nitric Oxide in Water and Saline
,”
Ann. Biomed. Eng.
0090-6964,
33
(
2
), pp.
214
222
.
15.
Watson
,
E. J.
, 1983, “
Diffusion in Oscillatory Pipe Flow
,”
J. Fluid Mech.
0022-1120,
133
, pp.
233
244
.
16.
Joshi
,
C. H.
,
Kamm
,
R. D.
,
Drazen
,
J. M.
, and
Slutsky
,
A. S.
, 1983, “
An Experimental Study of Gas Exchange in Laminar Oscillatory Flow
,”
J. Fluid Mech.
0022-1120,
133
, pp.
245
254
.
17.
Kurzweg
,
U. H.
,
Howell
,
G.
, and
Jaeger
,
M. J.
, 1984, “
Enhanced Dispersion in Oscillatory Flows
,”
Phys. Fluids
0031-9171,
27
(
5
), pp.
1046
1048
.
18.
Tsangaris
,
S.
, and
Athanassiadis
,
N.
, 1985, “
Diffusion in Oscillatory Flow in an Annular Pipe
,”
Z. Angew. Math. Mech.
0044-2267,
65
(
4
), pp.
T253
T254
.
19.
Weast
,
R. C.
, 1978,
CRC Handbook of Chemistry and Physics
, 59th ed.,
CRC
,
Boca Raton, FL
, pp.
F
-
51
and
F
-
62
.
20.
Bloomfield
,
I. G.
,
Johnston
,
I. H.
, and
Bilston
,
I. E.
, 1998, “
Effects of Proteins, Blood Cells and Glucose on the Viscosity of Cerebrospinal Fluid
,”
Pediatr. Neurosurg.
1016-2291,
28
, pp.
246
251
.
21.
Kutcuoglu
,
V.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2005, “
Computational Modeling of the Mechanical Behavior of the Cerebrospinal Fluid System
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
264
269
.
22.
Smillie
,
A.
,
Sobey
,
I.
, and
Molnar
,
Z.
, 2005, “
A Hydroelastic Model of Hydrocephalus
,”
J. Fluid Mech.
0022-1120,
539
, pp.
417
443
.
23.
Nilson
,
R. H.
,
Peterson
,
E. W.
,
Lie
,
K. H.
,
Burkhard
,
N. R.
, and
Hearst
,
J. R.
, 1991, “
Atmospheric Pumping: A Mechanism Causing Vertical Transport of Contaminated Gases Through Fractured Permeable Media
,”
J. Geophys. Res.
0148-0227,
96
(
B13
), pp.
21933
21948
.
24.
Stockman
,
H. W.
, 1997, “
A Lattice-Gas Study of Retardation and Dispersion in Fractures: Assessment of Errors From Desorption Kinetics and Buoyancy
,”
Water Resour. Res.
0043-1397,
33
(
8
), pp.
1823
1832
.
25.
Myers
,
M. R.
, 1997, “
First Ever Computer Simulation of Spinal Anesthesia Highlights Potential Dangers
,”
Simulation
0037-5497,
69
(
2
), pp.
111
113
.
26.
Myers
,
M. R.
, and
Malinauskas
,
R. A.
, 1998, “
Effect of Orifice-Area Reduction on Flow Characteristics During Injection Through Spinal Needles
,”
Anaesthesia
0003-2409,
53
(
2
), pp.
151
156
.
27.
Robinson
,
R. A.
,
Stewart
,
S. F. C.
,
Myers
,
M. R.
,
Lien
,
L. F.
,
Rinaldi
,
J. R.
,
Swisher
,
J. L.
, and
Drasner
,
K.
, 1994, “
In Vitro Modeling of Spinal Anesthesia: A Digital Video Imaging Technique and Its Application to Catheter Characterization
,”
Anesthesiology
0003-3022,
81
(
4
), pp.
1053
1060
.
28.
Eisenach
,
J. C.
,
Hood
,
D. D.
,
Curry
,
R.
, and
Shafer
,
S. L.
, 2002, “
Cephalad Movement of Morphine and Fentanylin in Humans After Intrathecal Injection
,”
Anesthesiology
0003-3022,
99
(
1
), pp.
166
173
.
You do not currently have access to this content.