The extent to which increased intracortical porosity affects the fracture properties of aging and osteoporotic bone is unknown. Here, we report the development and application of a microcomputed tomography based finite element approach that allows determining the effects of intracortical porosity on bone fracture by blocking all other age-related changes in bone. Previously tested compact tension specimens from human tibiae were scanned using microcomputed tomography and converted to finite element meshes containing three-dimensional cohesive finite elements in the direction of the crack growth. Simulations were run incorporating age-related increase in intracortical porosity but keeping cohesive parameters representing other age-related effects constant. Additional simulations were performed with reduced cohesive parameters. The results showed a 6% decrease in initiation toughness and a 62% decrease in propagation toughness with a 4% increase in porosity. The reduction in toughnesses became even more pronounced when other age-related effects in addition to porosity were introduced. The initiation and propagation toughness decreased by 51% and 83%, respectively, with the combined effect of 4% increase in porosity and decrease in the cohesive properties reflecting other age-related changes in bone. These results show that intracortical porosity is a significant contributor to the fracture toughness of the cortical bone and that the combination of computational modeling with advanced imaging improves the prediction of the fracture properties of the aged and the osteoporotic cortical bone.

1.
Yeni
,
Y. N.
,
Brown
,
C. U.
,
Wang
,
Z.
, and
Norman
,
T. L.
, 1997, “
The Influence of Bone Morphology on Fracture Toughness of the Human Femur and Tibia
,”
Bone (N.Y.)
8756-3282,
21
, pp.
453
459
.
2.
Wang
,
X.
,
Ruud
,
A. B.
,
TeKoppele
,
J. M.
, and
Agrawal
,
C. M.
, 2001, “
The Role of Collagen in Determining Bone Mechanical Properties
,”
J. Orthop. Res.
0736-0266,
19
, pp.
1021
1026
.
3.
Wang
,
X.
,
Shen
,
X.
,
Li
,
X.
, and
Agrawal
,
C. M.
, 2002, “
Age-Related Changes in the Collagen Network and Toughness of Bone
,”
Bone (N.Y.)
8756-3282,
31
, pp.
1
7
.
4.
Vashishth D.,
Gibson
,
G. J.
,
Khoury
,
J. I.
,
Schaffler
,
M. B.
,
Kimura
,
J.
, and
Fyhrie
,
D. P.
, 2001, “
Influence of Nonenzymatic Glycation on Biomechanical Properties of Cortical Bone
,”
Bone (N.Y.)
8756-3282,
28
(
2
), pp.
195
201
.
5.
Currey
,
J. D.
,
Brear
,
K.
, and
Zioupos
,
P.
, 1996, “
The Effects of Ageing and Changes in Mineral Content in Degrading the Toughness of Human Femora
,”
J. Biomech.
0021-9290,
29
(
2
), pp.
257
260
.
6.
Akkus
,
O.
,
Yeni
,
Y. N.
, and
Wasserman
,
N.
, 2004, “
Fracture Mechanics of Cortical Bone Tissue: A Hierarchical Perspective
,”
Crit. Rev. Biomed. Eng.
0278-940X,
32
(
5–6
), pp.
379
426
.
7.
Wang
,
X.
, and
Puram
,
S.
, 2004, “
The Toughness of Cortical Bone and Its Relationship With Age
,”
Ann. Biomed. Eng.
0090-6964,
32
(
1
), pp.
123
135
.
8.
Vashishth
,
D.
, 2005, “
Age-Dependent Biomechanical Modifications in Bone
,”
Crit. Rev. Eukaryot Gene Expr
1045-4403,
15
(
4
), pp.
343
358
.
9.
Ruegsegger
,
P.
,
Koller
,
B.
, and
Muller
,
R.
, 1996, “
A Microtomographic System for the Nondestructive Evaluation of Bone Architecture
,”
Calcif. Tissue Int.
0171-967X,
58
(
1
), pp.
24
29
.
10.
Borah
,
B.
,
Gross
,
G. J.
,
Dufresne
,
T. E.
,
Smith
,
T. S.
,
Cockman
,
M. D.
,
Chmielewski
,
P. A.
,
Lundy
,
M. W.
,
Hartke
,
J. R.
, and
Sod
,
E. W.
, 2001, “
Three-Dimensional Microimaging (MRμI and μCT), Finite Element Modeling, and Rapid Prototyping Provide Unique Insights Into Bone Architecture in Osteoporosis
,”
Anat. Rec.
0003-276X,
265
(
2
), pp.
101
110
.
11.
Van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
A.
, 1995, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite Element Models
,”
J. Biomech.
0021-9290,
28
(
1
), pp.
69
81
.
12.
Muller
,
R.
, and
Ruegsegger
,
P.
, 1995, “
Three-Dimensional Finite Element Modelling of Non-Invasively Assessed Trabecular Bone Structures
,”
Med. Eng. Phys.
1350-4533,
17
(
2
), pp.
126
133
.
13.
Pistoia
,
W.
,
van Rietbergen
,
B.
,
Laib
,
A.
, and
Ruegsegger
,
P.
, 2001, “
High-Resolution Three-Dimensional-pQCT Images Can Be an Adequate Basis for In-Vivo μFE Analysis of Bone
,”
J. Biomech. Eng.
0148-0731,
123
, pp.
176
183
.
14.
Van Rietbergen
,
B.
,
Huiskes
,
R.
,
Eckstein
,
F.
, and
Ruegsegger
,
P.
, 2003, “
Trabecular Bone Tissue Strains in the Healthy and Osteoporotic Human Femur
,”
J. Bone Miner. Res.
0884-0431,
18
(
10
), pp.
1781
1788
.
15.
Bayraktar
,
H. H.
,
Gupta
,
A.
,
Kwon
,
R. Y.
,
Papadopoulos
,
P.
, and
Keaveny
,
T. M.
, 2004, “
The Modified Super-Ellipsoid Yield Criterion for Human Trabecular Bone
,”
J. Biomech. Eng.
0148-0731,
126
(
6
), pp.
677
684
.
16.
Nagaraja
,
S.
,
Couse
,
T. L.
, and
Guldberg
,
R. E.
, 2005, “
Trabecular Bone Microdamage and Microstructural Stresses Under Uniaxial Compression
,”
J. Biomech.
0021-9290,
38
(
4
), pp.
707
716
.
17.
Zauel
,
R.
,
Yeni
,
Y. N.
,
Bay
,
B. K.
,
Dong
,
X. N.
, and
Fyhrie
,
D. P.
, 2006, “
Comparison of the Linear Finite Element Prediction of Deformation and Strain of Human Cancellous Bone to 3D Digital Volume Correlation Measurements
,”
J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
1
6
.
18.
Pistoia
,
W.
,
van Rietbergen
,
B.
,
Lochmuller
,
E.-M.
,
Lill
,
C. A.
, and
Ruegsegger
,
P.
, 2002, “
Estimation of Distal Radius Failure Load With Micro-Finite Element Analysis Models Based on Three-Dimensional Peripheral Quantitative Computed Tomography Images
,”
Bone (N.Y.)
8756-3282,
30
(
6
), pp.
842
848
.
19.
Keyak
,
J. H.
, and
Falkinstein
,
Y.
, 2003, “
Comparison of In Situ and In Vitro CT Scan-Based Finite Element Model Predictions of Proximal Femoral Fracture Load
,”
Med. Eng. Phys.
1350-4533,
25
, pp.
781
787
.
20.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
, 2005, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
J. Biomech. Eng.
0148-0731,
127
(
3
), pp.
364
373
.
21.
Shefelbine
,
S. J.
,
Simon
,
U.
,
Claes
,
L.
,
Gold
,
A.
,
Gabet
,
Y.
,
Bab
,
I.
,
Muller
,
R.
, and
Augat
,
P.
, 2005, “
Prediction of Fracture Callus Mechanical Properties Using Micro-CT Images and Voxel-Based Finite Element Analysis
,”
Bone (N.Y.)
8756-3282,
36
(
3
), pp.
480
488
.
22.
Verhulp
,
E.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
, 2006, “
Comparison of Micro-Level and Continuum-Level Voxel Models of the Proximal Femur
,”
J. Biomech.
0021-9290,
39
, pp.
2951
2957
.
23.
Silva
,
M. J.
,
Brodt
,
M. D.
, and
Hucker
,
W. J.
, 2005, “
Finite Element Analysis of Mouse Tibia: Estimating Endocortical Strain During Three-Point Bending in SAMP6 Osteoporotic Mice
,”
Anat. Rec. A Discov. Mol. Cell. Evol. Biol.
,
283
(
2
), pp.
380
390
.
24.
Yeni
,
Y. N.
,
Kim
,
D.-G.
, and
Fyhrie
,
D. P.
, 2005, “
Microcomputed Tomography-Based Large Scale Finite Element Modeling of Human Cortical Bone Tissue
,”
Transactions of the 51st Annual Meeting of the Orthopaedic Research Society
, Washington, DC, p. 685.
25.
Singer
,
B. R.
,
McLauchlan
,
G. C.
,
Robinson
,
C. M.
, and
Christie
,
J.
, 1998, “
Epidemiology of Fractures in 15000 Adults: The Influence of Age and Gender
,”
J. Bone Joint Surg. Br.
0301-620X,
80
(
2
), pp.
243
248
.
26.
Ural
,
A.
, and
Vashishth
,
D.
, 2006, “
Cohesive Finite Element Modeling of Age-Related Toughness Loss in Human Cortical Bone
,”
J. Biomech.
0021-9290,
39
, pp.
2974
2982
.
27.
ABAQUS, Version 6.5, ABAQUS Inc., Providence, RI, 2004.
28.
Camanho
,
P. P.
,
Davila
,
C. G.
, and
De Maura
,
M. F.
, 2003, “
Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials
,”
J. Compos. Mater.
0021-9983,
37
(
16
), pp.
1415
1438
.
29.
Brown
,
C. U.
,
Yener
,
Y.
, and
Norman
,
T. L.
, 2000, “
Fracture Toughness is Dependent on Bone Location- A Study of Femoral Neck, Femoral Shaft, and the Tibial Shaft
,”
J. Biomed. Mater. Res.
0021-9304,
49
(
3
), pp.
380
389
.
30.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1975, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
0021-9290,
8
, pp.
393
405
.
31.
Knets
,
I. V.
, 1978, “
Mechanics of Biological Tissues. A Review
,”
Mech. Compos. Mater.
0191-5665,
13
, pp.
434
440
.
32.
ASTM Standard E399-90
, 2000, “
Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials
,” American Society for Testing and Materials, Philadelphia.
33.
Vashishth
,
D.
,
Behiri
,
J. C.
, and Bonfield W., 1997, “
Crack Growth Resistance in Cortical Bone: Concept of Microcrack Toughening
,”
J. Biomech.
0021-9290,
30
, pp.
763
769
.
34.
Vashishth
,
D.
,
Wu
,
P.
, and
Gibson
,
G. J.
, 2004, “
Age-Related Loss in Bone: Toughness is Explained by Non-Enzymatic Glycation of Collagen
,”
Transactions of the 50th Annual Meeting of the Orthopaedic Research Society
, San Francisco, CA, p. 497.
35.
Nalla
,
R. K.
,
Kruzic
,
J. J.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
, 2004, “
Effect of Aging on the Toughness of Human Cortical Bone: Evaluation by R-Curves
,”
Bone (N.Y.)
8756-3282,
35
, pp.
1240
1246
.
36.
Jordan
,
G. R.
,
Loveridge
,
N.
,
Bell
,
K. L.
,
Power
,
J.
,
Rushton
,
N.
, and
Reeve
,
J.
, 2000, “
Spatial Clustering of Remodeling Osteons in the Femoral Neck Cortex: A Cause of Weakness in Hip Fracture?
,”
Bone (N.Y.)
8756-3282,
26
(
3
), pp.
305
313
.
37.
Martin
,
R. B.
,
Burr
,
D. B.
, and
Sharkey
,
N. A.
, 1998,
Skeletal Tissue Mechanics
,
Springer-Verlag
,
New York
.
38.
Wachter
,
N. J.
,
Augat
,
P.
,
Krischak
,
G. D.
,
Mentzel
,
M.
,
Kinzl
,
L.
, and
Claes
,
L.
, 2001, “
Prediction of Cortical Bone Porosity In Vitro by Microcomputed Tomography
,”
Calcif. Tissue Int.
0171-967X,
68
(
1
), pp.
38
42
.
39.
Pfeiffer
,
S.
, 1998, “
Variability in Osteon Size in Recent Human Populations
,”
Am. J. Phys. Anthropol.
0002-9483,
106
(
2
), pp.
219
227
.
40.
Cooper
,
D. M.
,
Turinsky
,
A. L.
,
Sensen
,
C. W.
, and
Hallgrimsson
,
B.
, 2003, “
Quantitative 3D Analysis of the Canal Network in Cortical Bone by Micro-Computed Tomography
,”
Anat. Rec.
0003-276X B New Anat.,
274
(
1
), pp.
169
179
.
41.
Cooper
,
D. M.
,
Matyas
,
J. R.
,
Katzenberg
,
M. A.
, and
Hallgrimsson
,
B.
, 2004, “
Comparison of Microcomputed Tomographic and Microradiographic Measurements of Cortical Bone Porosity
,”
Calcif. Tissue Int.
0171-967X,
74
(
5
), pp.
437
447
.
42.
Guldberg
,
R. E.
,
Hollister
,
S. J.
, and
Charras
,
G. T.
, 1999, “
The Accuracy of Digital Image-Based Finite Element Models
,”
J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
289
295
.
43.
Jacobs
,
C. R.
,
Davis
,
B. R.
,
Rieger
,
C. J.
,
Francis
,
J. J.
,
Saad
,
M.
, and
Fyhrie
,
D. P.
, 1999, “
The Impact of Boundary Conditions and Mesh Size on the Accuracy of Cancellous Bone Tissue Modulus Determination Using Large-Scale Finite-Element Modeling
,”
J. Biomech.
0021-9290,
32
(
11
), pp.
1159
1164
.
44.
Niebur
,
G. L.
,
Yuen
,
J. C.
,
Hsia
,
A. C.
, and
Keaveny
,
T. M.
, 1999, “
Convergence Behavior of High-Resolution Finite Element Models of Trabecular Bone
,”
J. Biomech. Eng.
0148-0731,
121
(
6
), pp.
629
635
.
45.
Crawford
,
R. P.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
, 2003, “
Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions
,”
J. Biomech. Eng.
0148-0731,
125
(
4
), pp.
434
438
.
46.
Yeni
,
Y. N.
,
Christopherson
,
G. T.
,
Dong
,
X. N.
,
Kim
,
D. G.
, and
Fyhrie
,
D. P.
, 2005, “
Effect of Microcomputed Tomography Voxel Size on the Finite Element Model Accuracy for Human Cancellous Bone
,”
J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
1
8
.
47.
Hyldstrup
,
L.
,
Jorgensen
,
J. T.
,
Sorensen
,
T. K.
, and
Baeksgaard
,
L.
, 2001, “
Response of Cortical Bone to Antiresorptive Treatment
,”
Calcif. Tissue Int.
0171-967X,
68
(
3
), pp.
135
139
.
48.
Roschger
,
P.
,
Rinnerthaler
,
S.
,
Yates
,
J.
,
Rodan
,
G. A.
,
Fratzl
,
P.
, and
Klaushofer
,
K.
, 2001, “
Alendronate Increases Degree and Uniformity of Mineralization in Cancellous Bone and Decreases the Porosity in Cortical Bone of Osteoporotic Women
,”
Bone (N.Y.)
8756-3282,
29
(
2
), pp.
185
191
.
49.
Cranney
,
A.
,
Waldegger
,
L.
,
Zytaruk
,
N.
,
Shea
,
B.
,
Weaver
,
B.
,
Papaioannou
,
A.
,
Robinson
,
V.
,
Wells
,
G.
,
Tugwell
,
P.
,
Adachi
,
J. D.
, and
Guyatt
,
G.
, 2003, “
Risedronate for the Prevention and Treatment of Postmenopausal Osteoporosis
,”
Cochrane Database Syst Rev.
,
4
, p.
CD004523
.
50.
Cranney
,
A.
,
Welch
,
V.
,
Adachi
,
J. D.
,
Guyatt
,
G.
,
Krolicki
,
N.
,
Griffith
,
L.
,
Shea
,
B.
,
Tugwell
,
P.
, and
Wells
,
G.
, 2001, “
Etidronate for Treating and Preventing Postmenopausal Osteoporosis
,”
Cochrane Database Syst Rev.
,
4
, p.
CD003376
.
51.
Beauchesne
,
M. F.
, and
Miller
,
P. F.
, 1999, “
Etidronate and Alendronate in the Treatment of Postmenopausal Osteoporosis
,”
Ann. Pharmacother
1060-0280,
33
(
5
), pp.
587
599
.
52.
Tobias
,
J. H.
, 1997, “
How Do Bisphosphonates Prevent Fractures
,”
Ann. Rheum. Dis.
0003-4967,
56
(
9
), pp.
510
511
.
53.
McCalden
,
R. W.
,
McGeough
,
J. A.
,
Barker
,
M. B.
, and
Court-Brown
,
C. M.
, 1993, “
Age-Related Changes in the Tensile Properties of Cortical Bone. The Relative Importance of Changes in Porosity, Mineralization, and Microstructure
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
75
, pp.
1193
1205
.
54.
Mazess
,
R. B.
, 1990, “
Fracture Risk: A Role for Compact Bone
,”
Calcif. Tissue Int.
0171-967X,
47
, pp.
191
193
.
55.
Nishihara
,
A.
, 1995, “
Femoral Neck and Iliac Bone Histomorphometry in Femoral Neck Fracture
,”
Nippon Seikeigeka Gakkai Zasshi
0021-5325,
69
(
4
), pp.
156
167
.
56.
Bell
,
K. L.
,
Loveridge
,
N.
,
Power
,
J.
,
Garrahan
,
N.
,
Meggitt
,
B. F.
, and
Reeve
,
J.
, 1999, “
Regional Differences in Cortical Porosity in the Fractured Femoral Neck
,”
Bone (N.Y.)
8756-3282,
24
(
1
), pp.
57
64
.
57.
Bell
,
K. L.
,
Loveridge
,
N.
,
Power
,
J.
,
Garrahan
,
N.
,
Stanton
,
M.
,
Lunt
,
M.
,
Meggitt
,
B. F.
, and
Reeve
,
J.
, 1999, “
Structure of the Femoral Neck in Hip Fracture: Cortical Bone Loss in the Inferoanterior to Superoposterior Axis
,”
J. Bone Miner. Res.
0884-0431,
14
(
1
), pp.
111
119
.
58.
Burr
,
D. B.
,
Hirano
,
T.
,
Turner
,
C. H.
,
Hotchkiss
,
C.
,
Brommage
,
R.
, and
Hock
,
J. M.
, 2001, “
Intermittently Administered Human Parathyroid Hormone(1–34) Treatment Increases Intracortical Bone Turnover and Porosity Without Reducing Bone Strength in the Humerus of Ovariectomized Cynomolgus Monkeys
,”
J. Bone Miner. Res.
0884-0431,
16
(
1
), pp.
157
165
.
You do not currently have access to this content.