Endothelial surface glycocalyx plays an important role in the regulation of microvessel permeability by possibly changing its charge and configuration. To investigate the mechanisms by which surface properties of the endothelial cells control the changes in microvessel permeability, we extended the electrodiffusion model developed by Fu et al. [Am. J. Physiol. 284, H1240–1250 (2003)], which is for the interendothelial cleft with a negatively charged surface glycocalyx layer, to include the filtration due to hydrostatic and oncotic pressures across the microvessel wall as well as the electrical potential across the glycocalyx layer. On the basis of the hypotheses proposed by Curry [Microcirculation 1(1): 11–26 (1994)], the predictions from this electrodiffusion-filtration model provide a good agreement with experimental data for permeability of negatively charged α-lactalbumin summarized in Curry [Microcirculation 1(1), 11–26 (1994)] under various conditions. In addition, we applied this new model to describe the transport of negatively charged macromolecules, bovine serum albumin (BSA), across venular microvessels in frog mesentery. According to the model, the convective component of the albumin transport is greatly diminished by the presence of a negatively charged glycocalyx under both normal and increased permeability conditions.

1.
Adamson
,
R. H.
,
Huxley
,
V. H.
, and
Curry
,
F. E.
,
1988
, “
Single Capillary Permeability to Proteins Having Similar Size but Different Charge
,”
Am. J. Physiol.
,
254
,
H304–H312
H304–H312
.
2.
Adamson
,
R. H.
, and
Clough
,
G.
,
1992
, “
Plasma Proteins Modify the Endothelial Cell Glycocalyx of Frog Mesenteric Microvessels
,”
J. Physiol. (London)
,
445
,
473
486
.
3.
Curry
,
F. E.
,
1994
, “
Regulation of Water and Solute Exchange in Microvessel Endothelium: Studies in Single Perfused Capillaries
,”
Microcirculation (Philadelphia)
,
1
,
11
26
.
4.
Fu
,
B. M.
,
Chen
,
B.
, and
Chen
,
W.
,
2003
, “
An Electrodiffusion Model for Effects of Surface Glycocalyx Layer on Microvessel Solute Permeability
,”
Am. J. Physiol.
,
284
,
H1240–H1250
H1240–H1250
.
5.
Hu
,
X.
,
Adamson
,
R. H.
,
Liu
,
B.
,
Curry
,
F. E.
, and
Weinbaum
,
S.
,
2000
, “
Starling Forces That Oppose Filtration After Tissue Oncotic Pressure is Increased
,”
Am. J. Physiol.
,
279
,
H1724–H1736
H1724–H1736
.
6.
Huxley
,
V. H.
, and
Curry
,
F. E.
,
1991
, “
Albumin Modulation of Capillary Permeability: Test of an Adsorption Mechanism
,”
Am. J. Physiol.
,
248
,
H264–H273
H264–H273
.
7.
Huxley
,
V. H.
, and
Curry
,
F. E.
,
1991
, “
Differential Actions of Albumin and Plasma on Capillary Solute Permeability
,”
Am. J. Physiol.
,
260
,
H1645–H1654
H1645–H1654
.
8.
Huxley
,
V. H.
,
Curry
,
F. E.
,
Powers
,
M. R.
, and
Thipakorn
,
B.
,
1993
, “
Differential Action of Plasma and Albumin on Transcapillary Exchange of Anionic Solute
,”
Am. J. Physiol.
,
264
,
H1428–H1437
H1428–H1437
.
9.
Michel
,
C. C.
, and
Curry
,
F. E.
,
1999
, “
Microvascular Permeability
,”
Physiol. Rev.
,
79
,
703
761
.
10.
Weinbaum
,
S.
,
Tzeghai
,
G.
,
Ganatos
,
P.
,
Pfeffer
,
R.
, and
Chien
,
S.
,
1985
, “
Effects of Cell Turnover and Leaky Junctions on Arterial Macromolecular Transport
,”
Am. J. Physiol.
,
248
,
H945–H960
H945–H960
.
11.
Fu
,
B. M.
,
Tsay
,
R.
,
Curry
,
F. E.
, and
Weinbaum
,
S.
,
1994
, “
A Junction-Orifice-Fiber Entrance Layer Model for Capillary Permeability: Application to Frog Mesenteric Capillaries
,”
J. Biomech. Eng.
,
116
,
502
513
.
12.
Fu
,
B. M.
,
Curry
,
F. E.
, and
Weinbaum
,
S.
,
1995
, “
A Diffusion Wake Model for Tracer Ultrastructure-Permeability Studies in Microvessels
,”
Am. J. Physiol.
,
269
,
H2124–H2140
H2124–H2140
.
13.
Fu
,
B. M.
,
Curry
,
F. E.
,
Adamson
,
R. H.
, and
Weinbaum
,
S.
,
1997
, “
A Model for Interpreting the Labeling of Interendothelial Clefts
,”
Ann. Biomed. Eng.
,
25
,
375
397
.
14.
Deen
,
W. M.
,
Behrooz
,
S.
, and
Jamieson
,
J. M.
,
1980
, “
Theoretical Model for Glomerular Filtration of Charged Solutes
,”
Am. J. Physiol.
,
238
,
F126–F139
F126–F139
.
15.
Fu
,
B. M.
,
Adamson
,
R. H.
, and
Curry
,
F. E.
,
1997
, “
Test of a Two Pathway Model for Small Solute Exchange Across the Capillary Wall
,”
Am. J. Physiol.
,
274
,
H2062–H2073
H2062–H2073
.
16.
Curry
,
F. E.
,
Joyner
,
W. L.
, and
Rutledge
,
J. C.
,
1990
, “
Graded Modulation of Frog Microvessel Permeability to Albumin Using Ionophore A23187
,”
Am. J. Physiol.
,
258
,
H587–H598
H587–H598
.
17.
Adamson
,
R. H.
, and
Michel
,
C. C.
,
1993
, “
Pathways Through the Intercellular Clefts of Frog Mesenteric Capillaries
,”
J. Physiol. (London)
,
466
,
303
327
.
18.
Hu
,
X.
, and
Weinbaum
,
S.
,
1999
, “
A New View of Starling’s Hypothesis at the Microstructural Level
,”
Microvasc. Res.
,
58
,
281
304
.
19.
Tsay
,
R.
,
Weinbaum
,
S.
, and
Pfeffer
,
R.
,
1989
, “
A New Model for Capillary Filtration Based on Recent Electron Microscopic Studies of Endothelial Junction
,”
Chem. Eng. Commun.
,
82
,
67
102
.
20.
Squire
,
J. M.
,
Chew
,
M.
,
Nneji
,
G.
,
Neal
,
C.
,
Barry
,
J.
, and
Michel
,
C.
,
2001
, “
Quasi-Periodic Substructure in the Microvessel Endothelial Glycocalyx: A Possible Explanation for Molecular Filtering?
J. Struct. Biol.
,
136
,
239
255
.
21.
Weinbaum
,
S.
,
Zhang
,
X.
,
Han
,
Y.
,
Vink
,
H.
, and
Cowin
,
S. C.
,
2003
, “
Mechanotransduction and Flow Across the Endothelial Glycocalyx
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
,
7988
7995
.
22.
Kedem
,
O.
, and
Kedem
,
O.
,
1963
, “
Permeability of Composite Membranes
,”
Trans. Faraday Soc.
,
59
,
1931
1953
.
23.
Curry
,
F. E.
, and
Michel
,
C. C.
,
1980
, “
A Fiber Matrix Model of Capillary Permeability
,”
Microvasc. Res.
,
20
,
96
99
.
24.
Michel
,
C. C.
, and
Phillips
,
M. E.
,
1987
, “
Steady-State Fluid Filtration at Different Capillary Pressure in Perfused Frog Mesenteric Capillaries
,”
J. Physiol. (London)
,
388
,
421
435
.
25.
Curry, F. E., 1983, “Mechanics and Thermodynamics of Transcapillary Exchange,” in Handbook of Physiology. The Cardiovascular System. Microcirculation. Bethesda, MD, Am. Physiol. Soc, Sec. 2, pt. IV, Chap. 8, pp. 309–374.
26.
Weinbaum
,
S.
,
Tsay
,
R.
, and
Curry
,
F. E.
,
1992
, “
A Three-Dimensional Junction-Pore-Matrix Model for Capillary Permeability
,”
Microvasc. Res.
,
44
,
85
111
.
27.
Bates
,
D. O.
,
1997
, “
The Chronic Effect of Vascular Endothelial Growth Factor on Individually Perfused Frog Mesenteric Microvessels
,”
J. Physiol. (London)
,
513
,
225
233
.
28.
Bates
,
D. O.
, and
Curry
,
F. E.
,
1996
, “
Vascular Endothelial Growth Factor Increases Hydraulic Conductivity of Isolated Perfused Microvessels
,”
Am. J. Physiol.
,
271
,
2520
2528
.
29.
Fu
,
B. M.
, and
Shen
,
S.
,
2003
, “
Structural Mechanisms of Acute VEGF Effect on Microvessel Permeability
,”
Am. J. Physiol.
,
284
,
H2124–H2135
H2124–H2135
.
30.
Mason
,
J. C.
,
Curry
,
F. E.
,
White
,
I. F.
, and
Michel
,
C. C.
,
1979
, “
The Ultrastructure of Frog Mesenteric Capillaries of Known Filtration Coefficient
,”
Q. J. Exp. Physiol. Cogn Med. Sci.
,
64
,
217
224
.
31.
Stace
,
T. M.
, and
Damiano
,
E. R.
,
2001
, “
An Electrochemical Model of the Transport of Charged Molecules Through the Capillary Glycocalyx
,”
Biophys. J.
,
80
,
1670
1690
.
You do not currently have access to this content.