A finite-element approach was formulated, aimed at enabling an integrated study of mechanical and biochemical factors that control the functional development of tissue engineered constructs. A nonlinear biphasic displacement-velocity-pressure description was combined with adjective and diffusive solute transport, uptake and biosynthesis. To illustrate the approach we focused on the synthesis and transport of macromolecules under influence of fluid flow induced by cyclic compression. In order to produce net transport the effect of dispersion was investigated. An abstract representation of biosynthesis was employed, three cases were distinguished: Synthesis dependent on a limited small solute, synthesis dependent on a limited large solute and synthesis independent of solute transport. Results show that a dispersion model can account for augmented solute transport by cyclic compression and indicate the different sensitivity to loading that can be expected depending on the size of the limiting solute.

1.
Freed
,
L. E.
,
Martin
,
I.
, and
Vunjak-Novakovic
,
G.
,
1999
, “
Frontiers in Tissue Engineering: In Vitro Modulation of Chondrogenesis
,”
Clin. Orthop.
,
367S
, pp.
S46–S58
S46–S58
.
2.
Freed
,
L. E.
, and
Vunjak-Novakovic
,
G.
,
1998
, “
Culture of Organized Cell Communities
,”
Advanced Drug Delivery Reviews
,
33
, pp.
15
30
.
3.
Rodriguez, A. M., and Vacanti, C. A., 1998, “Tissue Engineering of Cartilage,” Frontiers in tissue engineering, C. W. Patrick, A. G. Mikos, and L. V. McIntire, eds., Pergamon, Amsterdam, pp. 400–409.
4.
LeBaron
,
R. G.
, and
Athanasiou
,
K. A.
,
2000
, “
Ex Vivo Synthesis of Articular Cartilage
,”
Biomaterials
,
21
, pp.
2575
2587
.
5.
Freed
,
L. E.
,
Langer
,
R.
,
Martin
,
I.
,
Pellis
,
N. R.
, and
Vunjak-Novakovic
,
G.
,
1997
, “
Tissue Engineering of Cartilage in Space
,”
Proceedings of the National Academy of Sciences of the United States of America
,
94
, pp.
13885
13890
.
6.
Martin
,
I.
,
Obradovic
,
B.
,
Treppo
,
S.
,
Grodzinsky
,
A. J.
,
Langer
,
R.
,
Freed
,
L. E.
, and
Vunjak-Novakovic
,
G.
,
2000
, “
Modulation of the Mechanical Properties of Tissue Engineered Cartilage
,”
Biorheology
,
37
, pp.
141
147
.
7.
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Guilak
,
F.
,
2000
, “
Functional Tissue Engineering: The Role of Biomechanics
,”
J. Biomech. Eng.
,
122
, pp.
570
575
.
8.
Mauck
,
R. L.
,
Soltz
,
M. A.
,
Wang
,
C. C. B.
,
Wong
,
D. D.
,
Chao
,
P. H. G.
,
Valhmu
,
W. B.
,
Hung
,
C. T.
, and
Athesian
,
G. A.
,
2000
, “
Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels
,”
J. Biomech. Eng.
,
122
, pp.
252
260
.
9.
Vunjak-Novakovic
,
G.
,
Martin
,
I.
,
Obradovic
,
B.
,
Treppo
,
S.
,
Grodzinsky
,
A. J.
,
Langer
,
R.
, and
Freed
,
L. E.
,
1999
, “
Bioreactor Cultivation Conditions Modulate the Composition and Mechanical Properties of Tissue-Engineered Cartilage
,”
J. Orthop. Res.
,
17
, pp.
130
138
.
10.
Gooch
,
K. J.
,
Kwon
,
J. H.
,
Blunk
,
T.
,
Langer
,
R.
,
Freed
,
L. E.
, and
Vunjak-Novakovic
,
G.
,
2001
, “
Effects of Mixing Intensity on Tissue-Engineered Cartilage
,”
Biotechnol. Bioeng.
,
72
, pp.
402
407
.
11.
Freed
,
L. E.
,
Vunjak-Novakovic
,
G.
,
Marquis
,
J. C.
, and
Langer
,
R.
,
1994
, “
Kinetics of Chondrocyte Growth in Cell-Polymer Implants
,”
Biotechnol. Bioeng.
,
43
, pp.
597
604
.
12.
Freed
,
L. E.
,
Marquis
,
J. C.
,
Vunjak-Novakovic
,
G.
,
Emmanual
,
J.
, and
Langer
,
R.
,
1994
, “
Composition of Cell-Polymer Cartilage Implants
,”
Biotechnol. Bioeng.
,
43
, pp.
605
614
.
13.
Obradovic
,
B.
,
Carrier
,
R. L.
,
Vunjak-Novakovic
,
G.
, and
Freed
,
L. E.
,
1999
, “
Gas Exchange is Essential for Bioreactor Cultivation of Tissue Engineered Cartilage
,”
Biotechnol. Bioeng.
,
63
, pp.
197
205
.
14.
Lee
,
R. B.
, and
Urban
,
J. P. G.
,
1997
, “
Evidence for a Negative Pasteur Effect in Articular Cartilage
,”
Biochem. J.
,
321
, pp.
95
102
.
15.
Ellis
,
S. J.
,
Velayutham
,
M.
,
Velan
,
S. S.
,
Petersen
,
E. F.
,
Zweier
,
J. L.
,
Kuppusamy
,
P.
, and
Spencer
,
R. G. S.
,
2001
, “
EPR Oxygen Mapping (EPROM) of Engineered Cartilage Grown in a Hollow-Fiber Bioreactor
,”
Magn. Reson. Med.
,
46
, pp.
819
826
.
16.
Vunjak-Novakovic
,
G.
,
Obradovic
,
B.
,
Martin
,
I.
,
Bursac
,
P. M.
,
Langer
,
R.
, and
Freed
,
L. E.
,
1998
, “
Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering
,”
Biotechnol. Prog.
,
14
, pp.
193
202
.
17.
Gooch, K. J., Blunk, T., Tennant, C. T., Vunjak-Novakovic, G., Langer, R., and Freed, L. E., 1998, “Mechanical Forces and Growth Factors Utilized in Tissue Engineering,” Frontiers in Tissue Engineering, C. W. Patrick, A. G. Mikos, and L. V. McIntire, eds., Pergamon, Amsterdam, pp. 61–82.
18.
Blunk
,
T.
,
Sieminski
,
A. L.
,
Gooch
,
K. J.
,
Courter
,
D. L.
,
Hollander
,
A. P.
,
Nahir
,
A. M.
,
Langer
,
R.
,
Vunjak-Novakovic
,
G.
, and
Freed
,
L. E.
,
2002
, “
Differential Effects of Growth Factors on Tissue-Engineered Cartilage
,”
Tissue Eng.
,
8
(
1
), pp.
73
84
.
19.
Gooch
,
K. J.
,
Blunk
,
T.
,
Courter
,
D. L.
,
Sieminski
,
A. L.
,
Bursac
,
P. M.
,
Vunjak-Novakovic
,
G.
, and
Freed
,
L. E.
,
2001
, “
IGF-I and Mechanical Environment Interact to Modulate Engineered Cartilage Development
,”
Biochem. Biophys. Res. Commun.
,
286
, pp.
909
915
.
20.
Bonassar
,
L. J.
,
Grodzinsky
,
A. J.
,
Frank
,
E. H.
,
Davila
,
S. G.
,
Bhaktav
,
N. R.
, and
Trippel
,
S. B.
,
2001
, “
The Effect of Dynamic Compression on the Response of Articular Cartilage to Insulin-like Growth Factor-I
,”
J. Orthop. Res.
,
19
, pp.
11
17
.
21.
O’Hara
,
B. P.
,
Urban
,
J. P. G.
, and
Maroudas
,
A.
,
1990
, “
Influence of Cyclic Loading on the Nutrition of Articular Cartilage
,”
Ann. Rheum. Dis.
,
49
, pp.
536
539
.
22.
Grodzinsky, A. J., Kamm, R. D., and Lauffenburger, D. A., 1997, “Quantitative Aspects of Tissue Engineering: Basic Issues in Kinetics Transport and Mechanics,” Principles of tissue engineering, R. Lanza, R. Langer, and W. Chick, eds., Academic Press, London, pp. 193–207.
23.
Garcia
,
A. M.
,
Frank
,
E. H.
,
Grimshaw
,
P. E.
, and
Grodzinsky
,
A. J.
,
1996
, “
Contributions of Fluid Convection and Electrical Migration to Transport in Cartilage: Relevance to Loading
,”
Arch. Biochem. Biophys.
,
333
, pp.
317
325
.
24.
Bursac
,
P. M.
,
Freed
,
L. E.
,
Biron
,
R. J.
, and
Vunjak-Novakovic
,
G.
,
1996
, “
Mass Transfer Studies of Tissue Engineered Cartilage
,”
Tissue Eng.
,
2
(
2
), pp.
141
150
.
25.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
,
1995
, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell. Sci.
,
108
, pp.
1497
1508
.
26.
Urban
,
J. P. G.
,
2000
, “
Present Perspectives on Cartilage and Chondrocyte Mechanobiology
,”
Biorheology
,
37
, pp.
185
190
.
27.
Lee
,
D. A.
,
Noguchi
,
T.
,
Knight
,
M. M.
,
O’Donnell
,
L.
,
Bentley
,
G.
, and
Bader
,
D. L.
,
1998
, “
Response of Chondrocyte Subpopulations Cultured within Unloaded and Loaded Agarose
,”
J. Orthop. Res.
,
16
, pp.
726
733
.
28.
Nehring
,
D.
,
Adamietz
,
P.
,
Meenen
,
N. M.
, and
Po¨rtner
,
R.
,
1999
, “
Perfusion Cultures and Modeling of Oxygen Uptake with Three-Dimensional Chondrocyte Pellets
,”
Biotechnol. Tech.
,
13
, pp.
701
706
.
29.
Galban
,
C. J.
, and
Locke
,
B. R.
,
1997
, “
Analysis of Cell Growth in a Polymer Scaffold Using a Moving Boundary Approach
,”
Biotechnol. Bioeng.
,
56
, pp.
422
432
.
30.
Galban
,
C. J.
, and
Locke
,
B. R.
,
1999
, “
Analysis of Cell Growth Kinetics and Substrate Diffusion in a Polymer Scaffold
,”
Biotechnol. Bioeng.
,
65
, pp.
121
132
.
31.
Galban
,
C. J.
, and
Locke
,
B. R.
,
1999
, “
Effects of Spatial Variation of Cells and Nutrient and Product Concentrations Coupled with Product Inhibition on Cell Growth in a Polymer Scaffold
,”
Biotechnol. Bioeng.
,
64
, pp.
633
643
.
32.
Obradovic
,
B.
,
Meldon
,
J. H.
,
Freed
,
L. E.
, and
Vunjak-Novakovic
,
G.
,
2000
, “
Glycosaminoglycan Deposition in Engineered Cartilage: Experiments and Mathematical Model
,”
AIChE J.
,
46
(
9
), pp.
1860
1871
.
33.
Haselgrove
,
J. C.
,
Shapiro
,
I. M.
, and
Silverton
,
S. F.
,
1993
, “
Computer Modeling of the Oxygen Supply and Demand of Cells of the Avian Growth Cartilage
,”
Am. J. Physiol.
,
265
, pp.
c497–c506
c497–c506
.
34.
Boderke
,
P.
,
Schittkowski
,
K.
,
Wolf
,
M.
, and
Merkle
,
H. P.
,
2000
, “
Modeling of Diffusion and Concurrent Metabolism in Cutaneous Tissue
,”
J. Theor. Biol.
,
204
, pp.
393
407
.
35.
Stangeby
,
D. K.
, and
Ethier
,
C. R.
,
2002
, “
Computational Analysis of Coupled Blood-Wall Arterial LDL Transport
,”
J. Biomech. Eng.
,
124
, pp.
1
8
.
36.
Maseide
,
K.
, and
Rofstad
,
E. K.
,
2000
, “
Mathematical Modeling of Chronical Hypoxia in Tumors Considering Potential Doubling Time and Hypoxic Cell Lifetime
,”
Radiother. Oncol.
,
54
, pp.
171
177
.
37.
Netti
,
P. A.
,
Baxter
,
L. T.
,
Boucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R. K.
,
1997
, “
Macro- and Microscopic Fluid Transport in Living Tissues: Application to Solid Tumors
,”
Bioengineering Food and Natural Products
,
43
(
3
), pp.
818
834
.
38.
Bailey, J. E., and Ollis, D. F., 1986, Biochemical Engineering Fundamentals, McGraw-Hill, New York.
39.
Tziampazis
,
E.
, and
Sambanis
,
A.
,
1994
, “
Modeling of Cell Culture Processes
,”
Cytotechnology
,
14
, pp.
191
204
.
40.
Gallo
,
C.
, and
Manzini
,
G.
,
1998
, “
A Mixed Finite Element/Finite Volume Approach for Solving Biodegradation Transport in Groundwater
,”
Int. J. Numer. Methods Fluids
,
26
, pp.
533
556
.
41.
Chawla
,
S.
, and
Lenhart
,
S. M.
,
2000
, “
Application of Optimal Control Theory to Bioremediation
,”
J. Comput. Appl. Math.
,
114
, pp.
81
102
.
42.
Tervo
,
J.
,
Vauhkonen
,
M.
,
Vauhkonen
,
P. J.
, and
Kaipio
,
J. P.
,
2000
, “
A Three-Dimensional Finite Element Model for the Control of certain Non-Linear Bioreactors
,”
Mathematical Methods in the Applied Sciences
,
23
, pp.
357
377
.
43.
Prendergast
,
P. J.
,
Huiskes
,
R.
, and
Soballe
,
K.
,
1997
, “
Biophysical Stimuli on Cells During Tissue Differentiation at Implant Interfaces
,”
J. Biomech.
,
30
(
6
), pp.
539
548
.
44.
Carter
,
D. R.
,
Beaupre
,
G. S.
,
Giori
,
N. J.
, and
Helms
,
J. A.
,
1998
, “
Mechanobiology of Skeletal Regeneration
,”
Clin. Orthop.
,
355S
, pp.
S41–S55
S41–S55
.
45.
Sah
,
R. L. Y.
,
Doong
,
J. Y. H.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H. K.
, and
Sandy
,
J. D.
,
1991
, “
Effects of Compression on the Loss of Newly Synthesized Proteoglycans and Proteins from Cartilage Explants
,”
Arch. Biochem. Biophys.
,
286
(
1
), pp.
20
29
.
46.
Bowen
,
R. M.
,
1980
, “
Incompressible Porous Media Models by use of the Theory of Mixtures
,”
International Journal of Engineering Science
,
18
, pp.
1129
1148
.
47.
Almeida
,
E. S.
, and
Spilker
,
R. L.
,
1997
, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I—Alternate Formulations
,”
Computer Methods in Biomechanics and Biomedical Engineering
,
1
(
1
), pp.
25
46
.
48.
Frijns, A. J. H., 2000, “A Four-Component Mixture Theory Applied to Cartilaginous Tissues,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
49.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
International Journal of Engineering Science
,
35
(
8
), pp.
793
802
.
50.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1999
, “
A Mixed Finite Element Formulation of Triphasic Mechano-Electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
45
, pp.
1375
1402
.
51.
Pluen
,
A.
,
Netti
,
P. A.
,
Jain
,
R. K.
, and
Berk
,
D. A.
,
1999
, “
Diffusion of Macromolecules in Agarose Gels: Comparison of Linear and Globular Configurations
,”
Biophys. J.
,
77
, pp.
542
552
.
52.
Quinn
,
T. M.
,
Morel
,
V.
, and
Meister
,
J. J.
,
2001
, “
Static Compression of Articular Cartilage can Reduce Solute Diffusivity and Partitioning: Implications for the Chondrocyte Biological Response
,”
J. Biomech.
,
34
, pp.
1463
1469
.
53.
Levenston
,
M. E.
,
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1998
, “
Variationally Derived 3-Field Finite Element Formulations for Quasistatic Poroelastic Analysis of Hydrated Biological Tissues
,”
Comput. Methods Appl. Mech. Eng.
,
156
, pp.
231
246
.
54.
Almeida
,
E. S.
, and
Spilker
,
R. L.
,
1997
, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part II—Nonlinear Examples
,”
Computer Methods in Biomechanics and Biomedical Engineering
,
1
(
2
), pp.
151
170
.
55.
Wang
,
H.
,
Liang
,
D.
,
Ewing
,
R. E.
,
Lyons
,
S. L.
, and
Qin
,
G.
,
2000
, “
An Approximation to Miscible Fluid Flows in Porous Media with Point Sources and Sinks by an Eulerian-Lagrangian Localized Adjoint Method and Mixed Finite Element Methods
,”
SIAM J. Sci. Comput. (USA)
,
22
(
2
), pp.
561
581
.
56.
Segal, G., 2000, SEPRAN User’s Manual, Ingenieursbureau SEPRA, Leidschendam, The Netherlands.
57.
Strang
,
G.
,
1968
, “
On the Construction and Comparison of Difference Schemes
,”
SIAM J. Sci. Comput. (USA)
,
5
, pp.
506
517
.
58.
Lanser
,
D.
, and
Verwer
,
J. G.
,
1999
, “
Analysis of Operator Splitting for Advection-Diffusion-Reaction Problems from Air Pollution Modelling
,”
Journal of Computational and Applied Mathematics
,
11
, pp.
201
216
.
59.
Hundsdorfer
,
W.
, and
Verwer
,
J. G.
,
1995
, “
A Note on Splitting Errors for Advection-Reaction Equations
,”
Applied Numerical Mathematics
,
18
, pp.
191
199
.
60.
Morshed
,
J.
, and
Kaluarachchi
,
J. J.
,
1995
, “
Critical Assessment of the Operator-Splitting Technique in Solving the Advection-Dispersion-Reaction Equation: 2. Monod Kinetics and Coupled Transport
,”
Adv. Water Resour.
,
18
(
2
), pp.
101
110
.
61.
Comper
,
W. D.
, and
Williams
,
R. P. W.
,
1987
, “
Hydrodynamics of Concentrated Proteoglycan Solutions
,”
J. Biol. Chem.
,
262
(
28
), pp.
13464
13471
.
62.
Freed
,
L. E.
,
Hollander
,
A. P.
,
Martin
,
I.
,
Barry
,
J. R.
,
Langer
,
R.
, and
Vunjak-Novakovic
,
G.
,
1998
, “
Chondrogenesis in a Cell-Polymer-Bioreactor System
,”
Exp. Cell Res.
,
240
, pp.
58
65
.
63.
Wong
,
M.
,
Ponticiello
,
M.
,
Kovanen
,
V.
, and
Jurvelin
,
J. S.
,
2000
, “
Volumetric Changes of Articular Cartilage during Stress Relaxation in Unconfined Compression
,”
J. Biomech.
,
33
, pp.
1049
1054
.
64.
Lundberg
,
P.
, and
Kuchel
,
P. W.
,
1997
, “
Diffusion of Solutes in Agarose and Alginate Gels: 1H and 23Na PFGSE and 23Na TQF NMR Studies
,”
Magn. Reson. Med.
,
37
(
1
), pp.
44
52
.
65.
Davisson
,
T.
,
Kunig
,
S.
,
Chen
,
A.
,
Sah
,
R.
, and
Ratcliffe
,
A.
,
2002
, “
Static and Dynamic Compression Modulate Matrix Metabolism in Tissue Engineered Cartilage
,”
J. Orthop. Res.
,
20
, pp.
842
848
.
66.
Suh
,
J. K.
,
1996
, “
Dynamic Unconfined Compression of Articular Cartilage under a Cyclic Compressive Load
,”
Biorheology
,
33
(
45
), pp.
289
304
.
67.
Suh
,
J. K.
,
Li
,
Z.
, and
Woo
,
S. L. Y.
,
1995
, “
Dynamic Behavior of a Biphasic Cartilage Model under Cyclic Compressive Loading
,”
J. Biomech.
,
28
(
4
), pp.
357
364
.
68.
Quinn
,
T. M.
,
Studer
,
C.
,
Grodzinsky
,
A. J.
, and
Meister
,
J. J.
,
2002
, “
Preservation and Analysis of Nonequilibrium Solute Concentration Distributions within Mechanically Compressed Cartilage Explants
,”
J. Biochem. Biophys. Methods
,
52
, pp.
83
95
.
69.
Ishihara
,
H.
, and
Urban
,
J. P. G.
,
1999
, “
Effects of Low Oxygen Concentrations and Metabolic Inhibitors on Proteoglycan and Protein Synthesis Rates in the Intervertebral Disc
,”
J. Orthop. Res.
,
17
, pp.
829
835
.
70.
Martin
,
I.
,
Obradovic
,
B.
,
Freed
,
L. E.
, and
Vunjak-Novakovic
,
G.
,
1999
, “
Method for Quantitative Analysis of Glycosaminoglycan Distribution in Cultured Natural and Engineered Cartilage
,”
Ann. Biomed. Eng.
,
27
, pp.
656
662
.
71.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
J. Biomech. Eng.
,
120
, pp.
169
180
.
72.
Scha¨fer
,
D.
,
Scha¨fer
,
W.
, and
Kinzelbach
,
W.
,
1998
, “
Simulation of Reactive Processes related to Biodegradation in Aquifers 1. Structure of the Three-Dimensional Reactive Transport Model
,”
J. Contam. Hydrol.
,
31
, pp.
167
186
.
73.
MacQuarrie
,
K. T. B.
, and
Sudicky
,
E. A.
,
2001
, “
Multicomponent Simulation of Wastewater-Derived Nitrogen and Carbon in Shallow Unconfined Aquifers I. Model Formulation and Performance
,”
J. Contam. Hydrol.
,
47
, pp.
53
84
.
You do not currently have access to this content.