Recent magnetic resonance imaging (MRI) techniques have shown potential for measuring non-uniform deformations throughout the volume (i.e. three-dimensional (3D) deformations) in small orthopedic tissues such as articular cartilage. However, to analyze cartilage deformation using MRI techniques, a system is required which can construct images from multiple acquisitions of MRI signals from the cartilage in both the undeformed and deformed states. The objectives of the work reported in this article were to 1) design an apparatus that could apply highly repeatable cyclic compressive loads of 400 N and operate in the bore of an MRI scanner, 2) demonstrate that the apparatus and MRI scanner can be successfully integrated to observe 3D deformations in a phantom material, 3) use the apparatus to determine the load cycle necessary to achieve a steady-state deformation response in normal bovine articular cartilage samples using a flat-surfaced and nonporous indentor in unconfined compression. Composed of electronic and pneumatic components, the apparatus regulated pressure to a double-acting pneumatic cylinder so that (1) load-controlled compression cycles were applied to cartilage samples immersed in a saline bath, (2) loading and recovery periods within a cycle varied in time duration, and (3) load magnitude varied so that the stress applied to cartilage samples was within typical physiological ranges. In addition the apparatus allowed gating for MR image acquisition, and operation within the bore of an MRI scanner without creating image artifacts. The apparatus demonstrated high repeatability in load application with a standard deviation of 1.8% of the mean 400 N load applied. When the apparatus was integrated with an MRI scanner programmed with appropriate pulse sequences, images of a phantom material in both the undeformed and deformed states were constructed by assembling data acquired through multiple signal acquisitions. Additionally, the number of cycles to reach a steady-state response in normal bovine articular cartilage was 49 for a total cycle duration of 5 seconds, but decreased to 33 and 27 for increasing total cycle durations of 10 and 15 seconds, respectively. Once the steady-state response was achieved, 95% of all displacements were within ±7.42μm of the mean displacement, indicating that the displacement response to the cyclic loads was highly repeatable. With this performance, the MRI-loading apparatus system meets the requirements to create images of articular cartilage from which 3D deformation can be determined.

1.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
,
1995
, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell. Sci.
,
108
, pp.
1497
1508
.
2.
Guilak
,
F.
,
1995
, “
Compression-Induced Changes in the Shape and Volume of the Chondrocyte Nucleus
,”
J. Biomech.
,
28
, pp.
1529
1541
.
3.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
J. Biomech. Eng.
,
102
, pp.
73
84
.
4.
Spilker
,
R. L.
,
de Almeida
,
E. S.
, and
Donzelli
,
P. S.
,
1992
, “
Finite Element Methods for the Biomechanics of Soft Hydrated Tissues: Nonlinear Analysis and Adaptive Control of Meshes
,”
Crit. Rev. Biomed. Eng.
,
20
, pp.
279
313
.
5.
Setton
,
L. A.
,
Elliott
,
D. M.
, and
Mow
,
V. C.
,
1999
, “
Altered Mechanics of Cartilage with Osteoarthritis: Human Osteoarthritis and an Experimental Model of Joint Degeneration
,”
Osteoarthritis Cartilage
,
7
, pp.
2
14
.
6.
Eckstien
,
F.
,
Lemberger
,
B.
,
Stammberger
,
T.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
,
2000
, “
Effect of Static Versus Dynamic in Vivo Loading Exercises on Human Patellar Cartilage
,”
J. Biomech.
,
33
, pp.
819
825
.
7.
Herberhold
,
C.
,
Stammberger
,
T.
,
Faber
,
S.
,
Putz
,
R.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
,
1998
, “
An MR-Based Technique for Quantifying the Deformation of Articular Cartilage During Mechanical Loading in an Intact Cadaver Joint
,”
Magn. Reson. Med.
,
39
, pp.
843
850
.
8.
Gore
,
D. M.
,
Higginson
,
G. R.
, and
Minns
,
R. J.
,
1983
, “
Compliance of Articular Cartilage and Its Variation through the Thickness
,”
Phys. Med. Biol.
,
28
, pp.
233
247
.
9.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
, pp.
499
506
.
10.
Schinagl
,
R. M.
,
Ting
,
M. K.
,
Price
,
J. H.
, and
Sah
,
R. L.
,
1996
, “
Video Microscopy to Quantitate the Inhomogeneous Equilibrium Strain within Articular Cartilage During Confined Compression
,”
Ann. Biomed. Eng.
,
24
, pp.
500
512
.
11.
Eckstein
,
F.
,
Tieschky
,
M.
,
Faber
,
S.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
,
1999
, “
Functional Analysis of Articular Cartilage Deformation, Recovery, and Fluid Flow Following Dynamic Exercise in Vivo
,”
Anat. Embryol. (Berlin)
,
200
, pp.
419
424
.
12.
Eckstein
,
F.
,
Tieschky
,
M.
,
Faber
,
S. C.
,
Haubner
,
M.
,
Kolem
,
H.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
,
1998
, “
Effect of Physical Exercise on Cartilage Volume and Thickness in Vivo: MR Imaging Study
,”
Radiology
,
207
, pp.
243
248
.
13.
Waterton
,
J. C.
,
Solloway
,
S.
,
Foster
,
J. E.
,
Keen
,
M. C.
,
Gandy
,
S.
,
Middleton
,
B. J.
,
Maciewicz
,
R. A.
,
Watt
,
I.
,
Dieppe
,
P. A.
, and
Taylor
,
C. J.
,
2000
, “
Diurnal Variation in the Femoral Articular Cartilage of the Knee in Young Adult Humans
,”
Magn. Reson. Med.
,
43
, pp.
126
132
.
14.
Hudelmaier
,
M.
,
Glaser
,
C.
,
Hohe
,
J.
,
Englmeier
,
K. H.
,
Reiser
,
M.
,
Putz
,
R.
, and
Eckstein
,
F.
,
2001
, “
Age-Related Changes in the Morphology and Deformational Behavior of Knee Joint Cartilage
,”
Arthritis Rheum.
,
44
, pp.
2556
2561
.
15.
Regatte
,
R. R.
,
Kaufman
,
J. H.
,
Noyszewski
,
E. A.
, and
Reddy
,
R.
,
1999
, “
Sodium and Proton MR Properties of Cartilage During Compression
,”
J. Magn. Reson Imaging
,
10
, pp.
961
967
.
16.
Herberhold
,
C.
,
Faber
,
S.
,
Stammberger
,
T.
,
Steinlechner
,
M.
,
Putz
,
R.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
,
1999
, “
In Situ Measurement of Articular Cartilage Deformation in Intact Femoropatellar Joints under Static Loading
,”
J. Biomech.
,
32
, pp.
1287
1295
.
17.
Rubenstein
,
J. D.
,
Kim
,
J. K.
, and
Henkelman
,
R. M.
,
1996
, “
Effects of Compression and Recovery on Bovine Articular Cartilage: Appearance on MR Images
,”
Radiology
,
201
, pp.
843
850
.
18.
Kaufman
,
J. H.
,
Regatte
,
R. R.
,
Bolinger
,
L.
,
Kneeland
,
J. B.
,
Reddy
,
R.
, and
Leigh
,
J. S.
,
1999
, “
A Novel Approach to Observing Articular Cartilage Deformation in Vitro via Magnetic Resonance Imaging
,”
J. Magn. Reson Imaging
,
9
, pp.
653
662
.
19.
Mosher
,
T. J.
, and
Smith
,
M. B.
,
1990
, “
A DANTE Tagging Sequence for the Evaluation of Translational Sample Motion
,”
Magn. Reson. Med.
,
15
, pp.
334
339
.
20.
Axel
,
L.
, and
Dougherty
,
L.
,
1989
, “
Heart Wall Motion: Improved Method of Spatial Modulation of Magnetization for MR Imaging
,”
Radiology
,
172
, pp.
349
350
.
21.
De Crespigny
,
A. J.
,
Carpenter
,
T. A.
, and
Hall
,
L. D.
,
1991
, “
Cardiac Tagging in the Rat Using a DANTE Sequence
,”
Magn. Reson. Med.
,
21
, pp.
151
156
.
22.
McVeigh
,
E. R.
,
1996
, “
MRI of Myocardial Function: Motion Tracking Techniques
,”
Magn. Reson. Imaging
,
14
, pp.
137
150
.
23.
Duewell
,
S. H.
,
Ceckler
,
T. L.
,
Ong
,
K.
,
Wen
,
H.
,
Jaffer
,
F. A.
,
Chesnick
,
S. A.
, and
Balaban
,
R. S.
,
1995
, “
Musculoskeletal MR Imaging at 4 T and at 1.5 T: Comparison of Relaxation Times and Image Contrast
,”
Radiology
,
196
, pp.
551
555
.
24.
Mow, V. C., and Rosenwasser, M., 1988, “Articular Cartilage: Biomechanics,” in Injury and Repair of the Musculoskeletal Soft Tissues, S. L.-Y. Woo and J. A. Buckwalters, eds., American Academy of Orthopaedic Surgeons, Park Ridge, IL, pp. 427–463.
25.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, Inc., New York, NY.
26.
Haut
,
T. L.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
1998
, “
A High-Accuracy Three-Dimensional Coordinate Digitizing System for Reconstructing the Geometry of Diarthrodial Joints
,”
J. Biomech.
,
31
, pp.
571
577
.
27.
Huang
,
A.
,
Hull
,
M. L.
,
Howell
,
S. M.
, and
Haut
Donahue, T. L.
,
2002
, “
Identification of Cross-Sectional Parameters of Lateral Meniscal Allografts That Predict Tibial Contact Pressure in Human Cadaveric Knees
,”
ASME J. Biomech. Eng.
,
124
, pp.
481
489
.
28.
Sekaran
,
S. V.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2002
, “
Nonanatomic Location of the Posterior Horn of a Medial Meniscal Autograft Implanted in a Cadaveric Knee Adversely Affects the Pressure Distribution on the Tibial Plateau
,”
Am. J. Sports Med.
,
30
, pp.
74
82
.
29.
Young
,
A. A.
,
Axel
,
L.
,
Dougherty
,
L.
,
Bogen
,
D. K.
, and
Parenteau
,
C. S.
,
1993
, “
Validation of Tagging with MR Imaging to Estimate Material Deformation
,”
Radiology
,
188
, pp.
101
108
.
30.
Martin, R. B., Burr, D. B., and Sharkey, N. A., 1998, Skeletal Tissue Mechanics, Springer-Verlag, Inc., New York, NY.
31.
Barker
,
M. K.
, and
Seedhom
,
B. B.
,
1997
, “
Articular Cartilage Deformation under Physiological Cyclic Loading—Apparatus and Measurement Technique
,”
J. Biomech.
,
30
, pp.
377
381
.
32.
Parkkinen
,
J. J.
,
Lammi
,
M. J.
,
Karjalainen
,
S.
,
Laakkonen
,
J.
,
Hyvarinen
,
E.
,
Tiihonen
,
A.
,
Helminen
,
H. J.
, and
Tammi
,
M.
,
1989
, “
A Mechanical Apparatus with Microprocessor Controlled Stress Profile for Cyclic Compression of Cultured Articular Cartilage Explants
,”
J. Biomech.
,
22
, pp.
1285
1291
.
33.
Steinmeyer
,
J.
,
1997
, “
A Computer-Controlled Mechanical Culture System for Biological Testing of Articular Cartilage Explants
,”
J. Biomech.
,
30
, pp.
841
845
.
34.
Barker
,
M. K.
, and
Seedhom
,
B. B.
,
2001
, “
The Relationship of the Compressive Modulus of Articular Cartilage with Its Deformation Response to Cyclic Loading: Does Cartilage Optimize Its Modulus So as to Minimize the Strains Arising in It Due to the Prevalent Loading Regime
?”,
Rheumatology (Oxford)
,
40
, pp.
274
284
.
35.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
J. Biomech. Eng.
,
106
, pp.
165
173
.
You do not currently have access to this content.