A parallel genetic algorithm for optimization is outlined, and its performance on both mathematical and biomechanical optimization problems is compared to a sequential quadratic programming algorithm, a downhill simplex algorithm and a simulated annealing algorithm. When high-dimensional non-smooth or discontinuous problems with numerous local optima are considered, only the simulated annealing and the genetic algorithm, which are both characterized by a weak search heuristic, are successful in finding the optimal region in parameter space. The key advantage of the genetic algorithm is that it can easily be parallelized at negligible overhead.
Issue Section:
Other
1.
Pandy
, M. G.
, Anderson
, F. C.
, and Hull
, D. G.
, 1992
, “A Parameter Optimization Approach for the Optimal Control of Large-scale Musculoskeletal Systems
,” J. Biomech. Eng.
, 114
(4
), pp. 450
–460
.2.
Nelder
, J. A.
, and Mead
, R.
, 1965
, “A Simplex Method for Function Minimization
,” Comput. J. (Switzerland)
, 7
, pp. 308
–315
.3.
Fletcher, R., 1987, “Practical Methods of Optimization,” 2nd Edition, John Wiley & Sons Ltd., Chichester.
4.
Kirkpatrick
, S.
, Gelatt
, Jr., C. D.
and Vecchi
, M. P.
, 1983
, “Optimization by Simulated Annealing
,” Science
, 220
(4598
), pp. 671
–680
.5.
Corana
, A.
, Marchesi
, M.
, Martini
, C.
, and Ridella
, S.
, 1987
, “Minimizing Multimodal Functions of Continuous Variables with the “Simulated Annealing” Algorithm
,” ACM Trans. Math. Softw.
, 13
(3
), pp. 262
–280
.6.
Holland, J., 1975, “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor, Michigan.
7.
Davis, L., 1991, “Handbook of Genetic Algorithms,” Van Nostrand Reinhold, New York.
8.
Neptune
, R. R.
, 1999
, “Optimization Algorithm Performance in Determining Optimal Controls in Human Movement Analyses
,” J. Biomech. Eng.
, 121
(2
), pp. 249
–252
.9.
Goffe
, W. L.
, Ferrier
, W. D.
, and Rogers
, J.
, 1994
, “Global Optimization of Statistical Functions with Simulated Annealing
,” J. Neural. Netw. Comput.
, 60
((1/2)), pp. 65
–100
.10.
Leffer, S. J., McKusick, M. K., Karels, M. J., and Quarterman, J. S., 1989, “The Design and Implementation of the 4.3BSD UNIX Operating System,” Addison-Wesley Publishing Company, Reading, Massachusetts.
11.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1986, “Numerical Recipes: The Art of Scientific Computing,” Cambridge University Press, Cambridge.
12.
Metropolis
, N.
, Rosenbluth
, A. W.
, Rosenbluth
, M. N.
, Teller
, A. H.
, and Teller
, E.
, 1953
, “Equation of State Calculations by Fast Computing Machines
,” J. Chem. Phys.
, 21
(6
), pp. 1087
–1092
.13.
Schaffer, J. D., Caruana, R. A., Eshelman, L. J., Das, R., 1989, “A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimizing,” Proc. 3rd Int. Conf. Genetic Algorithms, David J. D., ed., Morgan Kaufmann Publishers, San Mateo, California, pp. 51–60.
14.
Ingber
, L.
, and Rosen
, B.
, 1992
, “Genetic Algorithms and Very Fast Simulated Reannealing: A Comparison
,” Math. Comput. Modell.
, 16
(11
), pp. 87
–100
.15.
Soest
, A. J.
, Schwab
, A. L.
, Bobbert
, M. F.
, van Ingen Schenau
, G. J.
, 1993
, “The Influence of the Biarticularity of the Gastrocnemius Muscle on Vertical-jumping Achievement
,” J. Biomech.
, 26
(1
), pp. 1
–8
.16.
Soest
, A. J.
, and Casius
, L. J. R.
, 2000
, “Which Factors Determine the Optimal Pedaling Rate in Sprint Cycling?”
, Med. Sci. Sports Exercise
, 32
(11
), pp. 1927
–1934
.17.
Kliewer, G., and Tscho¨ke, S., 2000, “A General Parallel Simulated Annealing Library and its Applications in Airline Industry,” Proc. 14th IPDPS, pp. 55–61.
18.
Chen
, H.
, Flann
, N. S.
, and Watson
, D. W.
, 1998, “Parallel Genetic Simulated Annealing: A Massively Parallel SIMD Algorithm,” IEEE Transactions on Parallel and Distributed Systems, 9(2), pp. 126–136.Copyright © 2003
by ASME
You do not currently have access to this content.