A parallel genetic algorithm for optimization is outlined, and its performance on both mathematical and biomechanical optimization problems is compared to a sequential quadratic programming algorithm, a downhill simplex algorithm and a simulated annealing algorithm. When high-dimensional non-smooth or discontinuous problems with numerous local optima are considered, only the simulated annealing and the genetic algorithm, which are both characterized by a weak search heuristic, are successful in finding the optimal region in parameter space. The key advantage of the genetic algorithm is that it can easily be parallelized at negligible overhead.

1.
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Hull
,
D. G.
,
1992
, “
A Parameter Optimization Approach for the Optimal Control of Large-scale Musculoskeletal Systems
,”
J. Biomech. Eng.
,
114
(
4
), pp.
450
460
.
2.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J. (Switzerland)
,
7
, pp.
308
315
.
3.
Fletcher, R., 1987, “Practical Methods of Optimization,” 2nd Edition, John Wiley & Sons Ltd., Chichester.
4.
Kirkpatrick
,
S.
,
Gelatt
, Jr.,
C. D.
and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.
5.
Corana
,
A.
,
Marchesi
,
M.
,
Martini
,
C.
, and
Ridella
,
S.
,
1987
, “
Minimizing Multimodal Functions of Continuous Variables with the “Simulated Annealing” Algorithm
,”
ACM Trans. Math. Softw.
,
13
(
3
), pp.
262
280
.
6.
Holland, J., 1975, “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor, Michigan.
7.
Davis, L., 1991, “Handbook of Genetic Algorithms,” Van Nostrand Reinhold, New York.
8.
Neptune
,
R. R.
,
1999
, “
Optimization Algorithm Performance in Determining Optimal Controls in Human Movement Analyses
,”
J. Biomech. Eng.
,
121
(
2
), pp.
249
252
.
9.
Goffe
,
W. L.
,
Ferrier
,
W. D.
, and
Rogers
,
J.
,
1994
, “
Global Optimization of Statistical Functions with Simulated Annealing
,”
J. Neural. Netw. Comput.
,
60
((1/2)), pp.
65
100
.
10.
Leffer, S. J., McKusick, M. K., Karels, M. J., and Quarterman, J. S., 1989, “The Design and Implementation of the 4.3BSD UNIX Operating System,” Addison-Wesley Publishing Company, Reading, Massachusetts.
11.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1986, “Numerical Recipes: The Art of Scientific Computing,” Cambridge University Press, Cambridge.
12.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.
13.
Schaffer, J. D., Caruana, R. A., Eshelman, L. J., Das, R., 1989, “A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimizing,” Proc. 3rd Int. Conf. Genetic Algorithms, David J. D., ed., Morgan Kaufmann Publishers, San Mateo, California, pp. 51–60.
14.
Ingber
,
L.
, and
Rosen
,
B.
,
1992
, “
Genetic Algorithms and Very Fast Simulated Reannealing: A Comparison
,”
Math. Comput. Modell.
,
16
(
11
), pp.
87
100
.
15.
Soest
,
A. J.
,
Schwab
,
A. L.
,
Bobbert
,
M. F.
,
van Ingen Schenau
,
G. J.
,
1993
, “
The Influence of the Biarticularity of the Gastrocnemius Muscle on Vertical-jumping Achievement
,”
J. Biomech.
,
26
(
1
), pp.
1
8
.
16.
Soest
,
A. J.
, and
Casius
,
L. J. R.
,
2000
, “
Which Factors Determine the Optimal Pedaling Rate in Sprint Cycling?”
,
Med. Sci. Sports Exercise
,
32
(
11
), pp.
1927
1934
.
17.
Kliewer, G., and Tscho¨ke, S., 2000, “A General Parallel Simulated Annealing Library and its Applications in Airline Industry,” Proc. 14th IPDPS, pp. 55–61.
18.
Chen
,
H.
,
Flann
,
N. S.
, and
Watson
,
D. W.
, 1998, “Parallel Genetic Simulated Annealing: A Massively Parallel SIMD Algorithm,” IEEE Transactions on Parallel and Distributed Systems, 9(2), pp. 126–136.
You do not currently have access to this content.