This study investigated the ability of the linear biphasic poroelastic (BPE) model and the linear biphasic poroviscoelastic (BPVE) model to simultaneously predict the reaction force and lateral displacement exhibited by articular cartilage during stress relaxation in unconfined compression. Both models consider articular cartilage as a binary mixture of a porous incompressible solid phase and an incompressible inviscid fluid phase. The BPE model assumes the solid phase is elastic, while the BPVE model assumes the solid phase is viscoelastic. In addition, the efficacy of two additional models was also examined, i.e., the transversely isotropic BPE (TIBPE) model, which considers transverse isotropy of the solid matrix within the framework of the linear BPE model assumptions, and a linear viscoelastic solid (LVE) model, which assumes that the viscoelastic behavior of articular cartilage is solely governed by the intrinsic viscoelastic nature of the solid matrix, independent of the interstitial fluid flow. It was found that the BPE model was able to accurately account for the lateral displacement, but unable to fit the short-term reaction force data of all specimens tested. The TIBPE model was able to account for either the lateral displacement or the reaction force, but not both simultaneously. The LVE model was able to account for the complete reaction force, but unable to fit the lateral displacement measured experimentally. The BPVE model was able to completely account for both lateral displacement and reaction force for all specimens tested. These results suggest that both the fluid flow-dependent and fluid flow-independent viscoelastic mechanisms are essential for a complete simulation of the viscoelastic phenomena of articular cartilage.

1.
Buckwalter, J., Hunziker, E., Rosenberg, L., Coutts, R., Adams, M., and Eyre, D., 1988, “Articular Cartilage: Composition and Structure,” Injury and Repair of the Musculoskeletal Soft Tissues, S. L.-Y. Woo and J. Buckwalter, eds., American Academy of Orthopaedic Surgeons, New York, pp. 405–425.
2.
Brown
,
T. D.
, and
Singerman
,
R. J.
,
1986
, “
Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis
,”
J. Biomech.
,
19
, No.
8
, pp.
597
605
.
3.
Bursac
,
P. M.
,
Obitz
,
T. W.
,
Eisenberg
,
S. R.
, and
Stamenovic
,
D.
,
1999
, “
Confined and Unconfined Stress Relaxation of Cartilage: Appropriateness of a Transversely Isotropic Analysis
,”
J. Biomech.
,
32
, pp.
1125
1130
.
4.
Hayes
,
W. C.
, and
Mockros
,
L. F.
,
1971
, “
Viscoelastic Properties of Human Articular Cartilage
,”
J. Appl. Physiol.
,
31
, No.
4
, pp.
562
568
.
5.
Mak
,
A. F.
,
1986
, “
The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
,
108
, pp.
123
130
.
6.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Athanasiou
,
K. A.
,
1989
, “
Biphasic Indentation of Articular Cartilage—II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
,
22
, Nos.
8/9
, pp.
853
861
.
7.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
8.
Suh, J-K. and Bai, S., 1997, “Biphasic Poroviscoelastic Behavior of Articular Cartilage in Creep Indentation Test,” Proc. 43rd Annual Meeting of the Orthopaedic Research Society, Vol. 22, p. 823.
9.
Mow, V. C., and Ratcliffe, A., 1997, “Structure and Function of Articular Cartilage and Meniscus,” Basic Orthopaedic Biomechanics, 2nd ed., V. C. Mow and W. C. Hayes, Eds., Lippincott-Raven, Philadelphia, PA, pp. 113–177.
10.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
1998
, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
,
31
, pp.
927
934
.
11.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
, pp.
165
173
.
12.
Suh
,
J-K.
, and
DiSilvestro
,
M. R.
,
1999
, “
Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue
,”
Journal of Applied Mechanics
,
66
, pp.
528
535
.
13.
Viidik
,
A.
,
1968
, “
A Rheological Model for Uncalcified Parallel-Fibered Collagenous Tissues
,”
J. Biomech.
,
1
, pp.
3
11
.
14.
Mow
,
V. C.
,
Mak
,
A. F.
, and
Lai
,
W. M.
,
1984
, “
Viscoelastic Properties of Proteoglycan Subunits and Aggregates in Varying Solution Concentrations
,”
J. Biomech.
,
17
, pp.
325
338
.
15.
Zhu, W. B., and Mow, V. C., 1990, “Viscometric Properties of Proteoglycan Solutions at Physiological Concentration,” Biomechanics of Diarthrodial Joints, V. C. Mow et al., eds., Springer-Verlag, New York, pp. 313–344.
16.
Hayes
,
W. C.
, and
Bodine
,
A. J.
,
1978
, “
Flow-Independent Viscoelastic Properties of Articular Cartilage Matrix
,”
J. Biomech.
,
11
, pp.
407
419
.
17.
Mak
,
A. F.
,
1986
, “
Unconfined Compression of Hydrated Viscoelastic Tissues: A Biphasic Poroviscoelastic Analysis
,”
Biorheology
,
23
, pp.
371
383
.
18.
Suh, J-K. and DiSilvestro, M. R., 1997, “Biphasic Poroviscoelastic Theory of Articular Cartilage: Experimental Validation Through Unconfined Compression,” Proc. ASME Summer Bioengineering Conference, Vol. 35, pp. 31–32.
19.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
1997
, “
Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
,
30
, pp.
235
241
.
20.
Wong
,
M.
,
Ponticiello
,
M.
,
Kovanen
,
V.
, and
Jurvelin
,
J.
,
2000
, “
Volumetric Changes of Articular Cartilage During Stress Relaxation in Unconfined Compression
,”
J. Biomech.
,
33
, pp.
1049
1054
.
21.
Biot
,
M. A.
,
1962
, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
,
33
, No.
4
, pp.
1482
1498
.
22.
Huang, C-Y., Stankiewicz, A., Ateshian, G. A., Flatow, E. L., Bigliani, L. U., and Mow, V. C., 1999, “Tensile and Compressive Stiffness of Human Glenohumeral Cartilage under Finite Deformation,” Proc. of the 1999 Bioengineering Conference, Vol. 12, pp. 469–470.
23.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
,
120
, pp.
491
496
.
24.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
121
, pp.
340
347
.
25.
Findley, W. N., Lai, J. S., and Onaran, K., 1976, Creep and Relaxation of Nonlinear Viscoelastic Materials With an Introduction to Linear Viscoelasticity, Dover, New York.
26.
Suh
,
J.-K.
, and
Bai
,
S.
,
1998
, “
Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage
,”
ASME J. Biomech. Eng.
,
120
, pp.
195
201
.
27.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces
,”
J. Global Optim.
,
11
, pp.
341
359
.
28.
Hogg, R., and Ledolter, J., 1992, Applied Statistics for Engineers and Physical Scientists, MacMillan, New York, p. 357.
29.
Huyghe
,
J. M.
,
van Campen
,
D. H.
,
Arts
,
T.
, and
Heethaar
,
R. M.
,
1991
, “
A Two-Phase Finite Element Model of the Diastolic Left Ventricle
,”
J. Biomech.
,
24
, No.
7
, pp.
527
538
.
30.
Spilker
,
R. L.
,
Donzelli
,
P. S.
, and
Mow
,
V. C.
,
1992
, “
A Transversely Isotropic Biphasic Finite Element Model of the Meniscus
,”
J. Biomech.
,
25
, No.
9
, pp.
1027
1045
.
31.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
, and
Suh
,
J. K.-F.
,
2001
, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage—II: Effect of Variable Strain Rates
,”
ASME J. Biomech. Eng.
,
123
, No.
2
, pp.
198
200
.
32.
Schinagl
,
R. M.
,
Ting
,
M. K.
,
Price
,
J. H.
, and
Sah
,
R. L.
,
1996
, “
Video Microscopy to Quantitate the Inhomogeneous Equilibrium Strain Within Articular Cartilage During Confined Compression
,”
Bone Miner.
,
24
, pp.
500
512
.
33.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
, pp.
245
258
.
34.
Tsaturyan
,
A. K.
,
Izacov
,
V. J.
,
Zhelamsky
,
S. V.
, and
Bykov
,
B. L.
,
1984
, “
Extracellular Fluid Filtration as the Reason for the Viscoelastic Behavior of the Passive Myocardium
,”
J. Biomech.
,
17
, No.
10
, pp.
749
755
.
35.
Mansour
,
J. M.
, and
Mow
,
V. C.
,
1976
, “
The Permeability of Articular Cartilage Under Compressive Strain and at High Pressures
,”
J. Bone Jt. Surg.
,
58-A
, No.
4
, pp.
509
516
.
You do not currently have access to this content.