Abstract
This review article discusses the applications of poroelasticity to the mechanics of faulting and failure in geomaterials. Values of material parameters inferred from laboratory and field studies are summarized. Attention is focused on solutions for shear dislocations and shear cracks. A common feature is that undrained response, invoked by rapid slip or deformation, is stiffer than drained response, which occurs for slower slip or deformation. The time and spatial variation of the stress and pore pressure is different for slip on permeable and impermeable planes. These solutions are applied to interpretation of water well level changes due to slip, earthquake precursory processes, and stabilization of spreading slip zones. Inclusion models for reservoirs, aquifers, and other inhomogeneities are formulated and the results are applied to stress and strain changes caused by fluid mass injection or withdrawal.