Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
Keywords: high-frequency effects
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Applied Mechanics
Publisher: ASME
Article Type: Research Papers
J. Appl. Mech. January 2009, 76(1): 011003.
Published Online: October 23, 2008
.... Such theories are not suitable for the analysis of complicated high-frequency effects in which displacements may change rapidly along the thickness coordinate. Clearly, to derive by asymptotic methods, a shell theory suitable for high-frequency behavior requires a different set of assumptions regarding...
Journal Articles
Journal:
Journal of Applied Mechanics
Publisher: ASME
Article Type: Technical Papers
J. Appl. Mech. January 2005, 72(1): 10–17.
Published Online: February 1, 2005
... 01 02 2005 carbon nanotubes beams (structures) vibrations elasticity shear deformation high-frequency effects Because of novel electronic properties and superior mechanical strength, carbon nanotubes (CNTs) have become the most promising candidate materials for nanoelectronics...