Skip Nav Destination
Issues
November 2011
ISSN 0021-8936
EISSN 1528-9036
In this Issue
Research Papers
Particle Filters in a Multiscale Environment: Homogenized Hybrid Particle Filter
J. Appl. Mech. November 2011, 78(6): 061001.
doi: https://doi.org/10.1115/1.4003167
Topics:
Filters
,
Particulate matter
,
Signals
,
Algorithms
,
Filtration
,
Particle filtering (numerical methods)
An Empirical Relationship for Extrapolating Sparse Experimental Lap Joint Data
J. Appl. Mech. November 2011, 78(6): 061002.
doi: https://doi.org/10.1115/1.4003769
Topics:
Cycles
,
Energy dissipation
,
Friction
,
Stress
,
Finite element analysis
Stochastic Reduced-Order Model in Low-Frequency Dynamics in Presence of Numerous Local Elastic Modes
J. Appl. Mech. November 2011, 78(6): 061003.
doi: https://doi.org/10.1115/1.4002593
Extended Kantorovich Method for Three-Dimensional Elasticity Solution of Laminated Composite Structures in Cylindrical Bending
J. Appl. Mech. November 2011, 78(6): 061004.
doi: https://doi.org/10.1115/1.4003779
The Relation Between Helical Spring Compliances With Free and Fixed End Rotations
J. Appl. Mech. November 2011, 78(6): 061005.
doi: https://doi.org/10.1115/1.4003739
Topics:
Springs
,
Wire
,
Rotation
,
Poisson ratio
Computational Fluid Dynamics and Experimental Validations of the Direct Coupling Between Interior, Intermediate and Exterior Ballistics Using the Euler Equations
Roxan Cayzac, Eric Carette, Thierry Alziary de Roquefort, François-Xavier Renard, Dominique Roux, Patrick Balbo, Jean-Noël Patry
J. Appl. Mech. November 2011, 78(6): 061006.
doi: https://doi.org/10.1115/1.4003812
Topics:
Ballistics
,
Computational fluid dynamics
,
Pressure
,
Computation
,
Brakes
,
Flow (Dynamics)
,
Projectiles
,
Waves
Investigation of Stress Intensity Factors for an Interface Crack in Multi-Interface Materials Using an Interaction Integral Method
J. Appl. Mech. November 2011, 78(6): 061007.
doi: https://doi.org/10.1115/1.4003906
Topics:
Fracture (Materials)
,
Stress
Effect of Semi-Geodesic Winding on the Vibration Characteristics of Filament Wound Shells of Revolution
J. Appl. Mech. November 2011, 78(6): 061008.
doi: https://doi.org/10.1115/1.4003907
Topics:
Shells
,
Winding (process)
,
Fibers
,
Vibration
Modeling of Systems With Position-Dependent Mass Revisited: A Port-Hamiltonian Approach
J. Appl. Mech. November 2011, 78(6): 061009.
doi: https://doi.org/10.1115/1.4003910
Topics:
Cable reels
,
Cables
,
Modeling
,
Equations of motion
Gap Surface Waves in a System of Two Elastic Superconducting Semispaces Separated by a Narrow Gap
J. Appl. Mech. November 2011, 78(6): 061010.
doi: https://doi.org/10.1115/1.4004427
A Note on the Co-linearity of Forces and Displacements in an Elastic Structure
J. Appl. Mech. November 2011, 78(6): 061011.
doi: https://doi.org/10.1115/1.4003912
Topics:
Displacement
,
Eigenvalues
,
Elasticity
,
Stress
Buckling and Vibration of Orthotropic Nonhomogeneous Rectangular Plates With Bilinear Thickness Variation
J. Appl. Mech. November 2011, 78(6): 061012.
doi: https://doi.org/10.1115/1.4003913
Topics:
Boundary-value problems
,
Buckling
,
Plates (structures)
,
Vibration
,
Stress
,
Density
,
Compression
Three-Dimensional Underwater Shock Response of Composite Marine Structures
J. Appl. Mech. November 2011, 78(6): 061013.
doi: https://doi.org/10.1115/1.4004525
Topics:
Composite materials
,
Failure
,
Plates (structures)
,
Pressure
,
Shock (Mechanics)
,
Stress
,
Fluids
,
Carbon reinforced plastics
,
Marine structures
Exact Analysis of Axisymmetric Dynamic Response of Functionally Graded Cylinders (or Disks) and Spheres
J. Appl. Mech. November 2011, 78(6): 061014.
doi: https://doi.org/10.1115/1.4003914
Topics:
Cylinders
,
Disks
,
Functionally graded materials
,
Laplace transforms
,
Displacement
,
Pressure
,
Vibration
,
Dynamic response
First Principles Estimation of Shock Tube Tests on Nanoreinforced Composite Materials
J. Appl. Mech. November 2011, 78(6): 061015.
doi: https://doi.org/10.1115/1.4004536
Topics:
Composite materials
,
Deflection
,
Shock tubes
,
Pressure
,
Stress
,
Glass
,
Shock (Mechanics)
,
Graphite
,
Simulation
,
Ships
Light Activated Shape Memory Polymer Characterization—Part II
J. Appl. Mech. November 2011, 78(6): 061016.
doi: https://doi.org/10.1115/1.4004552
Topics:
Polymers
,
Shape memory polymers
,
Young's modulus
,
Testing
,
Wavelength
,
Ultraviolet radiation
,
Stiffness
Thermoviscoplastic Modeling and Testing of Shape Memory Polymer Based Self-Healing Syntactic Foam Programmed at Glassy Temperature
J. Appl. Mech. November 2011, 78(6): 061017.
doi: https://doi.org/10.1115/1.4004554
Topics:
Computer programming
,
Damage
,
Glass
,
Glass transition
,
Modeling
,
Relaxation (Physics)
,
Shape memory polymers
,
Shapes
,
Stress
,
Temperature
Spectral Finite Element Formulation for Nanorods via Nonlocal Continuum Mechanics
J. Appl. Mech. November 2011, 78(6): 061018.
doi: https://doi.org/10.1115/1.4003909
Topics:
Elasticity
,
Finite element analysis
,
Nanorods
,
Stiffness
,
Continuum mechanics
,
Computation
Thermal Weight Functions and Stress Intensity Factors for Bonded Dissimilar Media Using Body Analogy
J. Appl. Mech. November 2011, 78(6): 061019.
doi: https://doi.org/10.1115/1.4003911
Topics:
Fracture (Materials)
,
Stress
,
Weight (Mass)
,
Heat
An Analytical Solution of Two-Dimensional Flow and Deformation Coupling Due to a Point Source Within a Finite Poroelastic Media
J. Appl. Mech. November 2011, 78(6): 061020.
doi: https://doi.org/10.1115/1.4004524
Topics:
Boundary-value problems
,
Deformation
,
Flow (Dynamics)
,
Pressure
,
Poisson ratio
,
Porous materials
Dynamic Stability of a Translating String With a Sinusoidally Varying Velocity
J. Appl. Mech. November 2011, 78(6): 061021.
doi: https://doi.org/10.1115/1.4003908
Topics:
String
,
Waves
,
Bifurcation
,
Displacement
,
Reflection
Extensional and Transversal Wave Motion in Transversely Isotropic Thermoelastic Plates by Using Asymptotic Method
J. Appl. Mech. November 2011, 78(6): 061022.
doi: https://doi.org/10.1115/1.4003721
Topics:
Thermoelasticity
,
Waves
,
Wavelength
,
Plates (structures)
,
Polynomials
,
Wave propagation
Technical Briefs
Quantifying the Anisotropy in Biological Materials
J. Appl. Mech. November 2011, 78(6): 064501.
doi: https://doi.org/10.1115/1.4004553
Topics:
Anisotropy
,
Biological tissues
,
Bone
,
Elasticity
,
Biomaterials
,
Wood products
Email alerts
RSS Feeds
Hamiltonian System-Based Symplectic Framework for Analytical Vibration Analysis of Microplates
J. Appl. Mech (December 2024)